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1. Short Answer (40 points)

True or False: (circle one, 4 points each)

(a) True or False: In a max-heap, the element with smallest key is always at the rightmost
leaf node of the heap? Solution: F: it’s always at a leaf node but not necessarily the
rightmost leaf node

(b) True or False: The height of a heap on n nodes is Q(logn)? Solution: T: it’s ©(logn)

(¢) True or False: In a max-heap, the element with the largest key is always at the root
of the heap? Solution: T

(d) True or False: Mergesort is asymptotically faster than heapsort (i.e. the big-O runtime
of heapsort is better than the big-O runtime of mergesort)?Solution: F: They are both
O(nlogn) time

(e) True or False: Heapsort requires O(n) extra space (not counting the space to store the
array to be sorted)? Solution: F: It requires O(1) extra space, it’s an in-place sorting
algorithm

Short Answer: For each function below, give a ©() expression that is as simplified as possible.
Justify your answers briefly. Circle your final answer. (4 points each)

(a) n?logn — ny/n + 10log'® n Solution: ©(n?logn) since this is the fastest growing term

(b) log®n® 4 10logn'® Solution: ©(log®n), since log> n® = 25log®n, and this is the fastest
growing term

(¢) v/nlog®n +loghn Solution: ©(y/nlog®n) since \/n grows faster than logn

(d) n* X" o5~ Solution: ©(n) since 315 ¢ = O(1)

(e) 2'°8s™ Solution: ©(\/n) since log,n = logyn/logy 4 = logyn/2, so 2'%81™ = O(y/n)
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1. Short Answer (40 points), continued.
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2. Annihilators and Recurrence Trees (20 points)
Consider the recurrence: T'(n) = 3T(n/3) +n? (and T'(n) = ©(1) for n a constant)

(a) Use the recurrence tree method to get a “guess” (i.e. simplest possible big-O) on the
solution to this recurrence. You need not prove your guess correct.

(b) Now use annihilators (and change of variable) to get a tight upperbound (i.e. simplest
possible big-O) on the solution to this recurrence.

Solution: Recurrence Tree: T'(n) = 3T(n/3) +n?, T(n/3) = 3T(n/9) + (n/3)%, T(n/9) =
3T (n/27) + (n/9)%. Writing this out in a recurrence tree, we get that the zero level is one n?,
the first level is three n?/9’s, the second level is 9 n?/81’s. In general, the i-th level sums to

n?/3'. There are loggn levels, so the sum of all of them is

logs n—1 mnfinity

n® > 13 < on? ) 1/3 (1)
1=0 1=0

= n?x(3/2) (2)

Thus the solution to the recurrence is O(n?)
Annihilators: Let n = 3' and t(i) = T(3"). Then

t(i) = 3t(i — 1) + 3% (3)
t(i) =3t(i —1) + 9" (4)

The annihilator for this is (L — 3)(L — 9), and thus from the lookup table, the form of the

recurrence 1s:

t(i) = 13" + 29’ (5)
t(i) = c13" + c2(3")? (6)

The reverse transformation gives that
T(n) = cin + con?

This is O(n?)
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2. Annihilators and Recurrence Trees (20 points), continued.
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3. Recursion and Recurrences (20 points)

Consider the following function:

int

f(int n){

if (n==0) return O;
else if (n==1) return 1;
elseq{

int val = 3%f(n-1);
val -= f(n-2);

val -= f(n-2);
return val;

Let f(n) be the value returned by the function f when given input n. Write a recurrence

relation for f(n):

Solution: f(n) = 3f(n-1)-2f(n-2)

Now solve the recurrence for f(n) ezactly using annihilators. (don’t forget to check your

solution)

Solution: Let T,, = f(n), and T = (T,,). Then

T = <Tn>
LT = (Tht)
L’T = (T2

Since (Tny2) = (3T41—2T}), we know that L*T —3LT+2T = (0), and thus L*—3L+2 =

(L —2)(L — 1) annihilates T. Thus f(n) is of the form:
f(n) =c12" + 1"

We know:

socy =1, co =—1 and thus

Check: f(2) =3 and 2> —1 = 3.

(10)
(11)
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3. Recursion and Recurrences (20 points), continued.

(¢) Now let T'(n) be the running time of the algorithm f on the previous page when given
input n. Write a recurrence relation for T'(n):
Solution: T(n) = T(n-1)+2T(n-2)+k for some constant k

(d) Now get a tight upperbound (i.e. big-O) on the solution for T'(n) using annihilators.

Solution: L? — L—2 annihilates the homogeneous part (factoring this gives (L—2)(L+1)
. L—1 annihilates the homogeneous part. So the total annihilator is (L—2)(L+1)(L—1).
The lookup table tells us that

T(n) =c12" + ca(—1)" + 31"

So the upperbound on the solution is O(2")
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4. Loop Invariants (20 points)

In this question, you will be proving the correctness of the procedure Heap-Increase-Key using
loop invariants. Recall that this procedure takes a heap A as input, and increases the key
of the i-th node of A to the value “key”. The procedure then ensures that the maz-heap
property(i.e. for all nodes j such that 1 < j <heapsize (A), A[parent (j)] > A[j]) is true for
the new heap. The procedure is given below:

Heap-Increase-Key (Aikey)

(a) if (key < Ali]) then error “new key is smaller than current key”
(b) Ali] = key;
(c) while (i>1 and A[Parent(i)] < A[i])

i. do exchange A[i] and A[Parent(i)]

ii. i = Parent(i);
Argue the correctness of Heap-Increase-Key using the following loop invariant:

At the start of each iteration of the while loop, the array A[l..heap-size(A)] satisfies the maz-
heap property , except that there may be one violation: A[i] may be larger than A[Parent(i)]

Show initialization,maintenance and termination for this loop invariant. (For termination,
show that the max-heap property holds for A[1..heap-size(A)] after the while loop terminates)

Solution: Initialization: At the start of the first iteration of the while loop, we have only
changed the value of Afi] in the original heap. Thus A[l..heap-size(A)] satisfies the max-heap
property except for the fact that Ali] may now be larger than A[Parent(i)]

Maintenance: Let i’ be the value of i at the current iteration of the while loop. Now at the
beginning of the current iteration of the while loop, the heap property holds for all A[1..heap-
size(A)] except that Afi’] is larger than A[Parent(i’)]. However, A[i’] and A[Parent(i’)] are
swapped during the current iteration. Thus the only new possible violation at the end of the
loop iteration is that A[Parent(i’)] is larger than A[Parent(Parent(i’))]. Setting i equal to
Parent(i’) at the end of the loop body then reestablishes the invariant.

Termination: We know that at the beginning of the last iteration of the while loop, the maz-
heap property held for A[1..heap-size(A)] except that there could be one violation: Ali] could
be larger than A[Parent(i)] However, the while loop terminates only if i =1 (i.e. there is no
Parent(i)) or A[Parent(i)] > Afi]. Thus, it’s not the case that Afi] is larger than A[Parent(i)],
and so the mazx-heap property holds with no violations!
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4. Loop Invariants (20 points), continued.




