University of New Mexico
Department of Computer Science

Midterm Examination

CS 361 Data Structures and Algorithms
Spring, 2003

Name:

Email:

Print your name and email, neatly in the space provided above; print your name at the upper

right corner of every page. Please print legibly.

This is an closed book exam. You are permitted to use only two pages of “cheat sheets” that

you have brought to the exam. Nothing else is permitted.

Do all four problems in this booklet. Show your work! You will not get partial credit if we

cannot figure out how you arrived at your answer.

Write your answers in the space provided for the corresponding problem. Let us know if you

need more paper.

Don’t spend too much time on any single problem. If you get stuck, move on to something

else and come back later.

If any question is unclear, ask us for clarification.

Question | Points | Score | Grader
1 40
2 20
3 20
4 20
Total 100

CS 361 Midterm —Spring, 2003 2 Name:

1. Short Answer (40 points)

True or False: (circle one, 4 points each)

(a) True or False: In a max-heap, the element with smallest key is always at the rightmost
leaf node of the heap? Solution: F: it’s always at a leaf node but not necessarily the
rightmost leaf node

(b) True or False: The height of a heap on n nodes is Q(logn)? Solution: T: it’s ©(logn)

(¢) True or False: In a max-heap, the element with the largest key is always at the root
of the heap? Solution: T

(d) True or False: Mergesort is asymptotically faster than heapsort (i.e. the big-O runtime
of heapsort is better than the big-O runtime of mergesort)?Solution: F: They are both
O(nlogn) time

(e) True or False: Heapsort requires O(n) extra space (not counting the space to store the
array to be sorted)? Solution: F: It requires O(1) extra space, it’s an in-place sorting
algorithm

Short Answer: For each function below, give a ©() expression that is as simplified as possible.
Justify your answers briefly. Circle your final answer. (4 points each)

(a) n?logn — ny/n + 10log'® n Solution: ©(n?logn) since this is the fastest growing term

(b) log®n® 4 10logn'® Solution: ©(log®n), since log> n® = 25log®n, and this is the fastest
growing term

(¢) v/nlog®n +loghn Solution: ©(y/nlog®n) since \/n grows faster than logn

(d) n* X" o5~ Solution: ©(n) since 315 ¢ = O(1)

(e) 2'°8s™ Solution: ©(\/n) since log,n = logyn/logy 4 = logyn/2, so 2'%81™ = O(y/n)

CS 361 Midterm —Spring, 2003 3 Name:

1. Short Answer (40 points), continued.

CS 361 Midterm —Spring, 2003 4 Name:

2. Annihilators and Recurrence Trees (20 points)
Consider the recurrence: T'(n) = 3T(n/3) +n? (and T'(n) = ©(1) for n a constant)

(a) Use the recurrence tree method to get a “guess” (i.e. simplest possible big-O) on the
solution to this recurrence. You need not prove your guess correct.

(b) Now use annihilators (and change of variable) to get a tight upperbound (i.e. simplest
possible big-O) on the solution to this recurrence.

Solution: Recurrence Tree: T'(n) = 3T(n/3) +n?, T(n/3) = 3T(n/9) + (n/3)%, T(n/9) =
3T (n/27) + (n/9)%. Writing this out in a recurrence tree, we get that the zero level is one n?,
the first level is three n?/9’s, the second level is 9 n?/81’s. In general, the i-th level sums to

n?/3'. There are loggn levels, so the sum of all of them is

logs n—1 mnfinity

n® > 13 < on?) 1/3 (1)
1=0 1=0

= n?x(3/2) (2)

Thus the solution to the recurrence is O(n?)
Annihilators: Let n = 3' and t(i) = T(3"). Then

t(i) = 3t(i — 1) + 3% (3)
t(i) =3t(i —1) + 9" (4)

The annihilator for this is (L — 3)(L — 9), and thus from the lookup table, the form of the

recurrence 1s:

t(i) = 13" + 29’ (5)
t(i) = c13" + c2(3")? (6)

The reverse transformation gives that
T(n) = cin + con?

This is O(n?)

CS 361 Midterm —Spring, 2003 5 Name:

2. Annihilators and Recurrence Trees (20 points), continued.

CS 361 Midterm —Spring, 2003 6 Name:

3. Recursion and Recurrences (20 points)

Consider the following function:

int

f(int n){

if (n==0) return O;
else if (n==1) return 1;
elseq{

int val = 3%f(n-1);
val -= f(n-2);

val -= f(n-2);
return val;

Let f(n) be the value returned by the function f when given input n. Write a recurrence

relation for f(n):

Solution: f(n) = 3f(n-1)-2f(n-2)

Now solve the recurrence for f(n) ezactly using annihilators. (don’t forget to check your

solution)

Solution: Let T,, = f(n), and T = (T,,). Then

T = <Tn>
LT = (Tht)
L’T = (T2

Since (Tny2) = (3T41—2T}), we know that L*T —3LT+2T = (0), and thus L*—3L+2 =

(L —2)(L — 1) annihilates T. Thus f(n) is of the form:
f(n) =c12" + 1"

We know:

socy =1, co =—1 and thus

Check: f(2) =3 and 2> —1 = 3.

(10)
(11)

CS 361 Midterm —Spring, 2003 7 Name:

3. Recursion and Recurrences (20 points), continued.

(¢) Now let T'(n) be the running time of the algorithm f on the previous page when given
input n. Write a recurrence relation for T'(n):
Solution: T(n) = T(n-1)+2T(n-2)+k for some constant k

(d) Now get a tight upperbound (i.e. big-O) on the solution for T'(n) using annihilators.

Solution: L? — L—2 annihilates the homogeneous part (factoring this gives (L—2)(L+1)
. L—1 annihilates the homogeneous part. So the total annihilator is (L—2)(L+1)(L—1).
The lookup table tells us that

T(n) =c12" + ca(—1)" + 31"

So the upperbound on the solution is O(2")

CS 361 Midterm —Spring, 2003 8 Name:

4. Loop Invariants (20 points)

In this question, you will be proving the correctness of the procedure Heap-Increase-Key using
loop invariants. Recall that this procedure takes a heap A as input, and increases the key
of the i-th node of A to the value “key”. The procedure then ensures that the maz-heap
property(i.e. for all nodes j such that 1 < j <heapsize (A), A[parent (j)] > A[j]) is true for
the new heap. The procedure is given below:

Heap-Increase-Key (Aikey)

(a) if (key < Ali]) then error “new key is smaller than current key”
(b) Ali] = key;
(c) while (i>1 and A[Parent(i)] < A[i])

i. do exchange A[i] and A[Parent(i)]

ii. i = Parent(i);
Argue the correctness of Heap-Increase-Key using the following loop invariant:

At the start of each iteration of the while loop, the array A[l..heap-size(A)] satisfies the maz-
heap property , except that there may be one violation: A[i] may be larger than A[Parent(i)]

Show initialization,maintenance and termination for this loop invariant. (For termination,
show that the max-heap property holds for A[1..heap-size(A)] after the while loop terminates)

Solution: Initialization: At the start of the first iteration of the while loop, we have only
changed the value of Afi] in the original heap. Thus A[l..heap-size(A)] satisfies the max-heap
property except for the fact that Ali] may now be larger than A[Parent(i)]

Maintenance: Let i’ be the value of i at the current iteration of the while loop. Now at the
beginning of the current iteration of the while loop, the heap property holds for all A[1..heap-
size(A)] except that Afi’] is larger than A[Parent(i’)]. However, A[i’] and A[Parent(i’)] are
swapped during the current iteration. Thus the only new possible violation at the end of the
loop iteration is that A[Parent(i’)] is larger than A[Parent(Parent(i’))]. Setting i equal to
Parent(i’) at the end of the loop body then reestablishes the invariant.

Termination: We know that at the beginning of the last iteration of the while loop, the maz-
heap property held for A[1..heap-size(A)] except that there could be one violation: Ali] could
be larger than A[Parent(i)] However, the while loop terminates only if i =1 (i.e. there is no
Parent(i)) or A[Parent(i)] > Afi]. Thus, it’s not the case that Afi] is larger than A[Parent(i)],
and so the mazx-heap property holds with no violations!

CS 361 Midterm —Spring, 2003 9 Name:

4. Loop Invariants (20 points), continued.

