
University of New Mexico
Department of Computer Science

Midterm Examination
CS 361 Data Structures and Algorithms

Spring, 2003

Name:

Email:

• Print your name and email, neatly in the space provided above; print your name at the upper
right corner of every page. Please print legibly.

• This is an closed book exam. You are permitted to use only two pages of “cheat sheets” that
you have brought to the exam. Nothing else is permitted.

• Do all four problems in this booklet. Show your work! You will not get partial credit if we
cannot figure out how you arrived at your answer.

• Write your answers in the space provided for the corresponding problem. Let us know if you
need more paper.

• Don’t spend too much time on any single problem. If you get stuck, move on to something
else and come back later.

• If any question is unclear, ask us for clarification.

Question Points Score Grader

1 40

2 20

3 20

4 20

Total 100



CS 361 Midterm —Spring, 2003 2 Name:

1. Short Answer (40 points)

True or False: (circle one, 4 points each)

(a) True or False: In a max-heap, the element with smallest key is always at the rightmost
leaf node of the heap? Solution: F: it’s always at a leaf node but not necessarily the
rightmost leaf node

(b) True or False: The height of a heap on n nodes is Ω(log n)? Solution: T: it’s Θ(log n)

(c) True or False: In a max-heap, the element with the largest key is always at the root
of the heap? Solution: T

(d) True or False: Mergesort is asymptotically faster than heapsort (i.e. the big-O runtime
of heapsort is better than the big-O runtime of mergesort)?Solution: F: They are both
O(n logn) time

(e) True or False: Heapsort requires O(n) extra space (not counting the space to store the
array to be sorted)? Solution: F: It requires O(1) extra space, it’s an in-place sorting
algorithm

Short Answer: For each function below, give a Θ() expression that is as simplified as possible.
Justify your answers briefly. Circle your final answer. (4 points each)

(a) n2 log n− n√n+ 10 log10 n Solution: Θ(n2 log n) since this is the fastest growing term

(b) log2 n5 + 10 log n10 Solution: Θ(log2 n), since log2 n5 = 25 log2 n, and this is the fastest
growing term

(c)
√
n log3 n+ log4 n Solution: Θ(

√
n log3 n) since

√
n grows faster than logn

(d) n ∗∑n
i=0 5−i Solution: Θ(n) since

∑n
i=0 5−i = O(1)

(e) 2log4 n Solution: Θ(
√
n) since log4 n = log2 n/ log2 4 = log2 n/2, so 2log4 n = Θ(

√
n)



CS 361 Midterm —Spring, 2003 3 Name:

1. Short Answer (40 points), continued.



CS 361 Midterm —Spring, 2003 4 Name:

2. Annihilators and Recurrence Trees (20 points)
Consider the recurrence: T (n) = 3T (n/3) + n2 (and T (n) = Θ(1) for n a constant)

(a) Use the recurrence tree method to get a “guess” (i.e. simplest possible big-O) on the
solution to this recurrence. You need not prove your guess correct.

(b) Now use annihilators (and change of variable) to get a tight upperbound (i.e. simplest
possible big-O) on the solution to this recurrence.

Solution: Recurrence Tree: T (n) = 3T (n/3) + n2, T (n/3) = 3T (n/9) + (n/3)2, T (n/9) =
3T (n/27) + (n/9)2. Writing this out in a recurrence tree, we get that the zero level is one n2,
the first level is three n2/9’s, the second level is 9 n2/81’s. In general, the i-th level sums to
n2/3i. There are log3 n levels, so the sum of all of them is

n2
log3 n−1∑

i=0

1/3i ≤ n2
infinity∑

i=0

1/3i (1)

= n2 ∗ (3/2) (2)

Thus the solution to the recurrence is O(n2)
Annihilators: Let n = 3i and t(i) = T (3i). Then

t(i) = 3t(i− 1) + 32i (3)

t(i) = 3t(i− 1) + 9i (4)

The annihilator for this is (L − 3)(L − 9), and thus from the lookup table, the form of the
recurrence is:

t(i) = c13i + c29i (5)

t(i) = c13i + c2(3i)2 (6)

The reverse transformation gives that

T (n) = c1n+ c2n
2

This is O(n2)



CS 361 Midterm —Spring, 2003 5 Name:

2. Annihilators and Recurrence Trees (20 points), continued.



CS 361 Midterm —Spring, 2003 6 Name:

3. Recursion and Recurrences (20 points)

Consider the following function:

int f(int n){

if (n==0) return 0;

else if (n==1) return 1;

else{

int val = 3*f(n-1);

val -= f(n-2);

val -= f(n-2);

return val;

}

}

(a) Let f(n) be the value returned by the function f when given input n. Write a recurrence
relation for f(n):

Solution: f(n) = 3f(n-1)-2f(n-2)

(b) Now solve the recurrence for f(n) exactly using annihilators. (don’t forget to check your
solution)

Solution: Let Tn = f(n), and T = 〈Tn〉. Then

T = 〈Tn〉 (7)

LT = 〈Tn+1〉 (8)

L2T = 〈Tn+2〉 (9)

Since 〈Tn+2〉 = 〈3Tn+1−2Tn〉, we know that L2T−3LT+2T = 〈0〉, and thus L2−3L+2 =
(L− 2)(L− 1) annihilates T . Thus f(n) is of the form:

f(n) = c12n + c21n

We know:

f(0) = 0 = c1 + c2 (10)

f(1) 1 = 2 ∗ c1 + c2 (11)

so c1 = 1, c2 = −1 and thus
f(n) = 2n − 1

Check: f(2) = 3 and 22 − 1 = 3.



CS 361 Midterm —Spring, 2003 7 Name:

3. Recursion and Recurrences (20 points), continued.

(c) Now let T (n) be the running time of the algorithm f on the previous page when given
input n. Write a recurrence relation for T (n):
Solution: T(n) = T(n-1)+2T(n-2)+k for some constant k

(d) Now get a tight upperbound (i.e. big-O) on the solution for T (n) using annihilators.

Solution: L2−L−2 annihilates the homogeneous part (factoring this gives (L−2)(L+1)
. L−1 annihilates the homogeneous part. So the total annihilator is (L−2)(L+1)(L−1).
The lookup table tells us that

T (n) = c12n + c2(−1)n + c31n

So the upperbound on the solution is O(2n)



CS 361 Midterm —Spring, 2003 8 Name:

4. Loop Invariants (20 points)

In this question, you will be proving the correctness of the procedure Heap-Increase-Key using
loop invariants. Recall that this procedure takes a heap A as input, and increases the key
of the i-th node of A to the value “key”. The procedure then ensures that the max-heap
property(i.e. for all nodes j such that 1 < j ≤heapsize (A), A[parent (j)] ≥ A[j]) is true for
the new heap. The procedure is given below:

Heap-Increase-Key (A,i,key)

(a) if (key < A[i]) then error “new key is smaller than current key”

(b) A[i] = key;

(c) while (i>1 and A[Parent(i)] < A[i])

i. do exchange A[i] and A[Parent(i)]

ii. i = Parent(i);

Argue the correctness of Heap-Increase-Key using the following loop invariant:

At the start of each iteration of the while loop, the array A[1..heap-size(A)] satisfies the max-
heap property , except that there may be one violation: A[i] may be larger than A[Parent(i)]

Show initialization,maintenance and termination for this loop invariant. (For termination,
show that the max-heap property holds for A[1..heap-size(A)] after the while loop terminates)

Solution: Initialization: At the start of the first iteration of the while loop, we have only
changed the value of A[i] in the original heap. Thus A[1..heap-size(A)] satisfies the max-heap
property except for the fact that A[i] may now be larger than A[Parent(i)]
Maintenance: Let i’ be the value of i at the current iteration of the while loop. Now at the
beginning of the current iteration of the while loop, the heap property holds for all A[1..heap-
size(A)] except that A[i’] is larger than A[Parent(i’)]. However, A[i’] and A[Parent(i’)] are
swapped during the current iteration. Thus the only new possible violation at the end of the
loop iteration is that A[Parent(i’)] is larger than A[Parent(Parent(i’))]. Setting i equal to
Parent(i’) at the end of the loop body then reestablishes the invariant.
Termination: We know that at the beginning of the last iteration of the while loop, the max-
heap property held for A[1..heap-size(A)] except that there could be one violation: A[i] could
be larger than A[Parent(i)] However, the while loop terminates only if i = 1 (i.e. there is no
Parent(i)) or A[Parent(i)] ≥ A[i]. Thus, it’s not the case that A[i] is larger than A[Parent(i)],
and so the max-heap property holds with no violations!



CS 361 Midterm —Spring, 2003 9 Name:

4. Loop Invariants (20 points), continued.


