
CS 361, Lecture 14

Jared Saia

University of New Mexico

Outline

• Bucket Sort

• Midterm Review

1

Bucket Sort

• Bucket sort assumes that the input is drawn from a uniform

distribution over the range [0,1)

• Basic idea is to divide the interval [0,1) into n equal size

regions, or buckets

• We expect that a small number of elements in A will fall into

each bucket

• To get the output, we can sort the numbers in each bucket

and just output the sorted buckets in order

2

Bucket Sort

//PRE: A is the array to be sorted, all elements in A[i] are between

0 and 1 inclusive.

//POST: returns a list which is the elements of A in sorted order

BucketSort(A){

B = new List[]

n = length(A)

for (i=1;i<=n;i++){

insert A[i] at end of list B[floor(n*A[i])];

}

for (i=0;i<=n-1;i++){

sort list B[i] with insertion sort;

}

return the concatenated list B[0],B[1],...,B[n-1];

}

3

Bucket Sort

• Claim: If the input numbers are distributed uniformly over

the range [0,1), then Bucket sort takes expected time O(n)

• Let T (n) be the run time of bucket sort on a list of size n

• Let ni be the random variable givingthe number of elements

in bucket B[i]

• Then T (n) = Θ(n) +
∑n−1
i=0 O(n2

i)

4

Analysis

• We know T (n) = Θ(n) +
∑n−1
i=0 O(n2

i)

• Taking expectation of both sides, we have

E(T (n)) = E(Θ(n) +
n−1∑

i=0

O(n2
i))

= Θ(n) +
n−1∑

i=0

E(O(n2
i))

= Θ(n) +
n−1∑

i=0

(O(E(n2
i)))

• The second step follows by linearity of expectation

• The last step holds since for any constant a and random

variable X, E(aX) = aE(X) (see Equation C.21 in the text)

5

Analysis

• We claim that E(n2
i) = 2− 1/n

• To prove this, we define indicator random variables: Xij = 1

if A[j] falls in bucket i and 0 otherwise (defined for all i,

0 ≤ i ≤ n− 1 and j, 1 ≤ j ≤ n)

• Thus, ni =
∑n
j=1Xij

• We can now compute E(n2
i) by expanding the square and

regrouping terms

6

Analysis

E(ni2) = E((
n∑

j=1

Xij)
2)

= E(
n∑

j=1

n∑

k=1

XijXik)

= E(
n∑

j=1

X2
ij +

∑

1≤j≤n

∑

1≤k≤n,k 6=j

XijXik)

=
n∑

j=1

E(X2
ij) +

∑

1≤j≤n

∑

1≤k≤n,k 6=j

E(XijXik))

7

Analysis

• We can evaluate the two summations separately. Xij is 1

with probability 1/n and 0 otherwise

• Thus E(X2
ij) = 1 ∗ (1/n) + 0 ∗ (1− 1/n) = 1/n

• Where k 6= j, the random variables Xij and Xik are indepen-

dent

• For any two independent random variables X and Y , E(XY) =

E(X)E(Y) (see C.3 in the book for a proof of this)

• Thus we have that

E(XijXik) = E(Xij)E(Xik)

= (1/n)(1/n)

= (1/n2)

8

Analysis

• Substituting these two expected values back into our main

equation, we get:

E(n2
i) =

n∑

j=1

E(X2
ij) +

∑

1≤j≤n

∑

1≤k≤n,k 6=j

E(XijXik))

=
n∑

j=1

(1/n) +
∑

1≤j≤n

∑

1≤k≤n,k 6=j

(1/n2)

= n(1/n) + (n)(n− 1)(1/n2)

= 1 + (n− 1)/n

= 2− (1/n)

9

Analysis

• Recall that E(T (n)) = Θ(n) +
∑n−1
i=0 (O(E(n2

i)))

• We can now plug in the equation E(n2
i) = 2− (1/n) to get

E(T (n)) = Θ(n) +
n−1∑

i=0

2− (1/n)

= Θ(n) + Θ(n)

= Θ(n)

• Thus the entire bucket sort algorithm runs in expected linear

time

10

Midterm

• Midterm: Tuesday, March 23rd in class (the Tuesday after

spring break)

• You can bring 2 pages of “cheat sheets” to use during the

exam. Otherwise the exam is closed book and closed note

• Note that the web page contains links to prior classes and

their midterms. Many of the questions on my midterm will

be similar in flavor to these past midterms (and to exercises

in the book)!

11

Review Session

• I will have a review session on Monday, March 22nd from

5:30-6:30 in FEC 141 (conference room on first floor of

FEC)

• Please try to make it to this review session if at all possible

12

Midterm

• 5 questions, about 20 points each

• Hard but fair

• There will be some time pressure, so make sure you can e.g.

solve recurrences both quickly and correctly.

• I expect a class mean of between 60 :(and 70 :) points

13

Question 1

Collection of true/false questions and short answer on:

• Asymptotic notation: e.g. I give you a bunch of functions

and ask you to give me the simplest possible theta notation

for each

• Recurrences: e.g. I ask you to solve a recurrence

• Heaps: e.g. I ask you questions about properties of heaps

and priority queues

• Sorting Algorithms: heapsort, quicksort, bucketsort, merge-

sort, (know resource bounds for these algorithms)

• Probability: Random variables, expectation, linearity of ex-

pectation, birthday paradox, analysis of expected runtime of

quicksort and bucketsort

14

Question 2

Solving recurrence relations:

• Like problems on hw 4 and Problem 7-3 (Stooge Sort)

• You’ll need to know annihilators, change of variables, han-

dling homogeneous and non-homogeneous parts of recur-

rences, recursion trees, and the Master Method

• You’ll need to know the formulas for sums of convergent and

divergent geometric series

15

Question 3

Asymptotic notation:

• Similar to book problems: 3.1-2, 3.1-5, 3.1-7

16

Question 4

Recurrence proof using induction (i.e. the substitution method):

• You’ll need to give base case, inductive hypothesis and then

show the inductive step

• Similar to Exercises 7.2-1, 4.2-1 and 4.2-3

17

Questions 5

Loop Invariant:

• Will give you an algorithm and ask you to give the loop

invariant you would use to show it is correct

• You may also need to give initialization, maintenance and

termination for your loop invariant

• Similar to the hw problems and in-class exercises on loop

invariants

18

Asymptotic Notation

• Let’s now review asymptotic notation

• I’ll review for O notation, make sure you understand the other

four types

• f(n) = O(g(n)) if there exists positive constants c and n0

such that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0

• This means to show that f(n) = O(g(n)), you need to give

positive constants c and n0 for which the above statement is

true!

19

Example 1

• Prove that 2n+1 = O(2n)

• Goal: Show there exist positive constants c and n0 such that

2n+1 ≤ c ∗ 2n for all n ≥ n0

2n+1 ≤ c ∗ 2n (1)

2 ∗ 2n ≤ c ∗ 2n (2)

2 ≤ c (3)

• Hence for c = 2 and n0 = 1, 2n+1 ≤ c ∗ 2n for all n ≥ n0

20

Example 2

• Prove that n+
√
n = O(n)

• Goal: Show there exist positive constants c and n0 such that

n+
√
n ≤ c ∗ n for all n ≥ n0

n+
√
n ≤ c ∗ n (4)

1 +
1√
n
≤ c (5)

(6)

• Hence if we choose n0 = 4, and c = 1.5, then it’s true that

n+
√
n ≤ c ∗ n for all n ≥ n0

21

Example 3

• Prove that 22n = O(5n)

• Goal: Show there exist positive constants c and n0 such that

22n ≤ c ∗ 5n for all n ≥ n0

22n ≤ c ∗ 5n (7)

4n ≤ c ∗ 5n (8)

(4/5)n ≤ c (9)

(10)

• Hence for c = 1 and n0 = 1, 22n ≤ c ∗ 5n for all n ≥ n0

22

A Procedure

Goal: prove that f(n) = O(g(n))

1. Write down what this means mathematically

2. Write down the inequality f(n) ≤ c ∗ g(n)

3. Simplify this inequality so that c is isolated on the right hand

side

4. Now find a n0 and a c such that for all n ≥ n0, this simplified

inequality is true

23

In Class Exercise

Show that n2n is O(4n)

• Q1: What is the exact mathematical statement of what you

need to prove?

• Q2: What is the first inequality in the chain of inequalities?

• Q3: What is the simplified inequality where c is isolated?

• Q4: What is a n0 and c such that the inequality of the last

question is always true?

24

Example: Substitution Method

• Consider the following recurrence:

T (n) = 22−n ∗ T (n− 1) ∗ T (n− 1)

where T (1) = 2.

• Show that T (n) = 2n by induction. Include the following

in your proof: 1)the base case(s) 2)the inductive hypothesis

and 3)the inductive step.

25

Example: Substitution Method

• Base Case: T (1) = 2 which is in fact 21.

• Inductive Hypothesis: For all j < n, T (j) = 2j

• Inductive Step: We must show that T (n) = 2n, assuming the

inductive hypothesis.

T (n) = 22−n ∗ T (n− 1) ∗ T (n− 1)

T (n) = 22−n ∗ 2n−1 ∗ 2n−1

T (n) = 2n

where the inductive hypothesis allows us to make the replace-

ments in the second step.

26

Todo

• Enjoy Spring!

• Study for Midterm

27

