Direct Addressing

—

CS 361, Lecture 17

Suppose universe of keys is U = {0,1,...,m — 1}, where m is
not too large

Assume no two elements have the same key

We use an array T[0..m — 1] to store the keys

Slot k£ contains the elem with key k

Jared Saia
University of New Mexico

—— Hash Tables —— Direct Address Functions

Hash Tables implement the Dictionary ADT, namely:
DA-Search(T,k){ return T[k];}
e Insert(x) - O(1) expected time, ©(n) worst case DA-Insert(T,x){ Tlkey(x)] = x;}
e Lookup(x) - O(1) expected time, ©(n) worst case DA-Delete(T,x){ Tlkey(x)] = NIL;}
e Delete(x) - O(1) expected time, ©(n) worst case
Each of these operations takes O(1) time

—— Direct Addressing Problem —— Chained Hash ——

In chaining, all elements that hash to the same slot are put in a
If universe U is large, storing the array T' may be impractical linked list

e Also much space can be wasted in T if number of objects
stored is small

Q: Can we do better?

A: Yes we can trade time for space

CH-Insert(T,x){Insert x at the head of list T[h(key(x))];}
CH-Search(T,k){search for elem with key k in list T[h(k)];}
CH-Delete(T,x){delete x from the list T[h(key(x))];}

—— Hash Tables —— —— Analysis ——

e "Key" Idea: An element with key k is stored in slot h(k),

where h is a hash function mapping U into the set {0,...,m—
1} e CH-Insert and CH-Delete take O(1) time if the list is doubly
e Main problem: Two keys can now hash to the same slot linked and there are no duplicate keys
e QQ: How do we resolve this problem? e QQ: How long does CH-Search take?
e Al: Try to prevent it by hashing keys to “random’ slots and e A: It depends. In particular, depends on the load factor,
making the table large enough a=n/m (i.e. average number of elems in a list)

e A2: Chaining
e A3: Open Addressing

CH-Search AnalysiS —— Hash Functions —

I_ I_

Worst case analysis: everyone hashes to one slot so ©(n)

For average case, make the simple uniform hashing assump-

tion: any given elem is equally likely to hash into any of the ' i)
. e Key idea is to use the hash function to “break up” any pat-

m slots, indep. of the other elems ¢ that miaht exist in the dat

Let n; be a random variable giving the length of the list at erns) at might exist in the .a a

the i-th slot e We will always assume a key is a natural number (can e.g.

easily convert strings to naturaly numbers)

e Want each key to be equally likely to hash to any of the m
slots, independently of the other keys

Then time to do a search for key k is 1 + nyy,

CH-Search AnalysiS —— Division Method ——

I_ I_

e A: We know that h(k) is uniformly distributed among {0, .., m— * h(k) =k modm .
1} e Want m to be a prime number

o Thus, E(nyy) = i (1/m)n; = n/m = a e Why?

—

—

Multiplication Method ——

h(k) = |m* (kA mod 1)|

kA mod 1 means the fractional part of kA

Advantage: value of m is not critical, need not be a prime
A = (/5 —1)/2 works well in practice

12

—

Open Addressing ——

All elements are stored in the hash table itself, there are no
separate linked lists

When we do a search, we probe the hash table until we find
an empty slot

Sequence of probes depends on the key

Thus hash function maps from a key to a “probe sequence”
(i.e. a permutation of the numbers 0,..,m — 1)

13

—

Open Addressing ——

e In general, for open addressing, the hash function depends

on both the key to be insertedd and the probe number

e Thus for a key k, we get the probe sequence

h(k,0),h(k,1),...,h(k,m — 1)

14

Open Addressing ——

If we use open addressing, the hash table can never fill up
i.e. the load factor o can never exceed 1

An advantage of open addressing is that it avoids pointers
and the overhead of storing lists in each slot of the table
This freed up memory can be used to create more slots in
the table which can reduce the load-factor and potentially
speed up retrieval time

A disadvantage is that deletion is difficult. If deletions occur
in the hash table, chaining is usually used

15

L OA-Insert —— L OA-Delete —

0A-Insert(T,k){

i=0;
repeat {
j = h(k,i); e Deletion from an open-address hash table is difficult
if (T[j] = nil){ e When we delete a key from slot 7, we can't just mark that
T3] = k; slot as empty by storing nil there
return j; e The problem is that this would make it impossible to find
} some key k during whose insertion we probed slot ¢ and found
else i++; it occupied

} until (i==m);

16 18

L OA-Search —— L OA-Delete —

0A-Insert(T,k){

i = 0; e One solution is to mark the slot by storing in it the value
repeat { “DELETED"

j = h(k,i); e Then we modify OA-Insert to treat such a slot as if it were

if (T[] = ®¥{ empty so that something can be stored in it

return j; e OA-Search passes over these special slots while searching

} e Note that if we use this trick, search times are no longer

else i++; dependent on the load-factor a (for this reason, chaining is
} until (T[jl==nil or i==m); more commonly used when keys must be deleted)

}

17 19

Implementation —— Analysis ——

I_ I_

e Recall that the load factor, «, is the number of elements
stored in the hash table, n, divided by the total number of
slots m

e In open-address hashing, we have at most one element per
slot so a <1

e We assume uniform hashing i.e. each probe maps to essen-
tially a random slot in the table.

e We can show that the expected time for insertions is at most
1/(1 — a), the expected time for an unsuccessful search is
1/(1 — a) and the expected time for a successful search is

(1/a)In[1/(1 - a)]

e To analyze open-address hashing, we make the assumption
of uniform hashing: we assume that each key is equally likely
to have any of the m! permutations of {0,1,...,m —1} as its
probe sequence

e True uniform hashing is difficult to implement, so in practice,
we generally use one of three approximations on the next slide

20 22

Implementations —— Hash Tables Wrapup ——

I_ I_

All positions are taken modulo m, and i ranges from 1 tom —1

Hash Tables implement the Dictionary ADT, namely:
e Linear Probing: Initial probe is to position h(k), successive

probes are to positions h(k) + 1,

e Quadratic Probing: Initial probes is to position h(k), succes-
sive probes are to position h(k) 4 c1i + ¢oi?

e Double Hashing: Initial probe is to position h(k), successive
probes are to positions h(k) + iho(k)

e Insert(x) - O(1) expected time, ©(n) worst case
e Lookup(x) - O(1) expected time, ©(n) worst case
e Delete(x) - O(1) expected time, ©(n) worst case

21 23

Binary Search Trees ——— Why BST?

e Q: When would you use a Search Tree?
e Al: When need a hard guarantee on the worst case run times
(e.g. “mission critical” code)
e Binary Search Trees are another data structure for imple- e A2: When want something more dynamic than a hash table
menting the dictionary ADT (e.g. don't want to have to enlarge a hash table when the
load factor gets too large)
e A3: Search trees can implement some other important op-
erations...
24 . 26
Red-Black Trees ——— Search Tree Operations —
P
Red-Black trees (a kind of binary tree) also implement the Dic-
. . Insert
tionary ADT, namely:
Lookup
Delete

e Insert(x) - O(logn) time
e Lookup(x) - O(logn) time
e Delete(x) - O(logn) time

Minimum/Maximum
Predecessor/Successor

25 27

i ?
— What isa BST?

e It's a binary tree

e Each node holds a key and record field, and a pointer to left
and right children

e Binary Search Tree Property is maintained

28

— Binary Search Tree Property ———

e Let x be a node in a binary search tree. If y is a node in the

left subtree of z, then key(y)<key(x). If y is a node in the
right subtree of z then key(x)<key(y)

29

—— Example BST ——

30

— Inorder Walk ——

e BSTs are arranged in such a way that we can print out the
elements in sorted order in ©(n) time
e Inorder Tree-Walk does this

31

—— Inorder Tree-Walk

Inorder-TW(x){
if (x is not nil){
Inorder-TW(left(x));
print key(x);
Inorder-TW(right(x));

32

—— Example Tree-Walk

33

—— Analysis

e Correctness?
e Run time?

34

