— Homework —

CS 361, Lecture 24

Jared Saia

e Any questions on the homework?
University of New Mexico

L Outline — L Administrative ——

e This week and next, you can get one extra participation
check by going to section and informing Nate that you're
e SKip Lists there and want a check.
e Sections are Thursday 5:30-6:20 DSH 134 and Friday 1:00-
1:50 TAPY 218
e Good chance to get info on hw, projects and to review ma-
terial for final




—— Project —— —— Skip List ———

e Technically, not a BST, but they implement all of the same
operations

e Very elegant randomized data structure, simple to code but
analysis is subtle

e They guarantee that, with high probability, all the major op-
erations take O(logn) time

e Project will be due May 6th in class

e L ate projects will not be accepted

e You can get partial credit for an unfinished project turned in
on time but will get no credit for a finished project turned in
late

—— Final ——— —— Skip List ——

e A skip list is basically a collection of doubly-linked lists,

Final will be Mav 11th 5:30-7:30 ] | | L1,Lo,...,L;, for some integer x
* Cllna <\1Nlb ek ;yt ¢ ” o fm In-our rdegu Iar T issroom e Each list has a special head and tail node, the keys of these
© Llosed book, bul lwo pleces Of paper and calcliators are nodes are assumed to be —MAXNUM and +MAXNUM re-
allowed .
spectively

e The keys in each list are in sorted order (non-decreasing)




L Skip List —— Search ——

e Every node is stored in the bottom list

e For each node in the bottom list, we flip a coin over and e To do a search for a key, x, we start at the leftmost node L
over until we get tails. For each heads, we make a duplicate in the highest level
of the node. e We then scan through each level as far as we can without

e The duplicates are stacked up in levels and the nodes on passing the target value x and then proceed down to the next
each level are strung together in sorted linked lists level

e Each node v stores a search key (key(v)), a pointer to its e The search ends either when we find the key z or fail to find
next lower copy (down(v)), and a pointer to the next node x on the lowest level

in its level (right(v)).

L Example —— Search ———

SkipListFind(x, L){
v = L;
while (v != NULL) and (Key(v) != x){
if (Key(Right(v)) > x)

v = Down(v);

else
v = Right(v);

}
return v;

}




Search Example —— Deletion ———~

I_ I_

e Deletion is very simple

e First do a search for the key to be deleted

e Then delete that key from all the lists it appears in from
the bottom up, making sure to “zip up” the lists after the
deletion
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Analysis ——

—— Insert —— ——

p is a constant between 0 and 1, typically p = 1/2, let rand()

return a random value between 0 and 1 e Intuitively, each level of the skip list has about half the num-
ber of nodes of the previous level, so we expect the total

Insert (k){ number of levels to be about O(logn)

First call Search(k), let pLeft be the leftmost elem <= k in L_1 e Similarly, each time we add another level, we cut the search

Insert k in L_1, to the right of pLeft time in half except for a constant overhead

i=2; e So after O(logn) levels, we would expect a search time of

while (rand()<= p){ O(logn)

insert k in the appropriate place in L_i; e We will now formalize these two intuitive observations
}
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Height of Skip List ——— Height of Skip List ———

I_ I_

e For some key, i, let X; be the maximum height of 7 in the

skip list.
e Q: What is the probability that X, > 2logn?
o A: If p=1/2, we have: e T his probability gets small as n gets large
13 2logn e In particular, the probability of having a skip list of size ex-
P(X;>2logn) = (5) ceeding 2logn is o(1)
_ 1 e If an event occurs with probability 1 — o(1), we say that it
© (2logn)2 occurs with high probability
_ i e Key Point: The height of a skip list is O(logn) with high
n2 probability.
e Thus the probability that a particular key ¢ achieves height
e 1
2logn is 2
16 . 18
—— Height of Skip List — —— In-Class Exercise Trick ——
e QQ: What is the probability that any key achieves height
2logn?
e Al We want A trick for computing expectations of discrete positive random
P(Xq1>2logn or Xo >2logn or ... or X, > 2logn) variables:

By a Union Bound, this probability is no more than .
e Let X be a discrete r.v., that takes on values from 1 to n

P(Xq1>klogn)+ P(Xo > klogn) 4+ ---+ P(Xn > klogn) n
E(X)= > P(X >1i)

=1

Which equals:

no1 n
2=
i=1
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Why? Search Time ———

n e Its easier to analyze the search time if we imagine running
Z P(X2>i) = PX=1)+PX=2)+PX=3)+... the search backwards
i=1 + P(X=2)+P(X=3)4+P(X=4)+... e Imagine that we start at the found node v in the bottommost
list and we trace the path backwards to the top leftmost
+ P(X=3)+P(X=4)+P(X=5)+... . P P
n senitel, L
e This will give us the length of the search path from L to v
= 1+ P(X=1+2+P(X=2)+3+P(X=3) +... which is the time required to do the search
= E(X)
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In-Class Exercise — Backwards Search ——
Q: How much memory do we expect a skip list to use up? SLFback(v){
while (v !'= L){
e Let X; be the number of lists that element i is inserted in. if (Up(v)!=NIL)
e Q: What is P(X; > 1), P(X; >2), P(X; > 3)? v = Up(v);
e Q: What is P(X; > k) for general k7 else
e Q: What is E(X;)? v = Left(v);
e Q:Let X =31, X;. What is E(X)? }r
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L Backward Search ——

e For every node v in the skip list Up(v) exists with probability
1/2. So for purposes of analysis, SLFBack is the same as
the following algorithm:

FlipWalk(v){
while (v != L){
if (COINFLIP == HEADS)

v = Up(v);
else
v = Left(v);
}r
24 .
—— Analysis ——

e For this algorithm, the expected number of heads is exactly
the same as the expected number of tails

e Thus the expected run time of the algorithm is twice the
expected number of upward jumps

e Since we already know that the number of upward jumps
is O(logn) with high probability, we can conclude that the
expected search time is O(logn)
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