— Homework —

CS 361, Lecture 24

Jared Saia

e Any questions on the homework?
University of New Mexico

L Outline — L Administrative ——

e This week and next, you can get one extra participation
check by going to section and informing Nate that you're
e SKip Lists there and want a check.
e Sections are Thursday 5:30-6:20 DSH 134 and Friday 1:00-
1:50 TAPY 218
e Good chance to get info on hw, projects and to review ma-
terial for final

—— Project —— —— Skip List ———

e Technically, not a BST, but they implement all of the same
operations

e Very elegant randomized data structure, simple to code but
analysis is subtle

e They guarantee that, with high probability, all the major op-
erations take O(logn) time

e Project will be due May 6th in class

e L ate projects will not be accepted

e You can get partial credit for an unfinished project turned in
on time but will get no credit for a finished project turned in
late

—— Final ——— —— Skip List ——

e A skip list is basically a collection of doubly-linked lists,

Final will be Mav 11th 5:30-7:30] | | L1,Lo,...,L;, for some integer x
* Cllna <\1Nlb ek ;yt ¢ ” o fm In-our rdegu Iar T issroom e Each list has a special head and tail node, the keys of these
© Llosed book, bul lwo pleces Of paper and calcliators are nodes are assumed to be —MAXNUM and +MAXNUM re-
allowed .
spectively

e The keys in each list are in sorted order (non-decreasing)

L Skip List —— Search ——

e Every node is stored in the bottom list

e For each node in the bottom list, we flip a coin over and e To do a search for a key, x, we start at the leftmost node L
over until we get tails. For each heads, we make a duplicate in the highest level
of the node. e We then scan through each level as far as we can without

e The duplicates are stacked up in levels and the nodes on passing the target value x and then proceed down to the next
each level are strung together in sorted linked lists level

e Each node v stores a search key (key(v)), a pointer to its e The search ends either when we find the key z or fail to find
next lower copy (down(v)), and a pointer to the next node x on the lowest level

in its level (right(v)).

L Example —— Search ———

SkipListFind(x, L){
v = L;
while (v != NULL) and (Key(v) != x){
if (Key(Right(v)) > x)

v = Down(v);

else
v = Right(v);

}
return v;

}

Search Example —— Deletion ———~

I_ I_

e Deletion is very simple

e First do a search for the key to be deleted

e Then delete that key from all the lists it appears in from
the bottom up, making sure to “zip up” the lists after the
deletion

12 14

Analysis ——

—— Insert —— ——

p is a constant between 0 and 1, typically p = 1/2, let rand()

return a random value between 0 and 1 e Intuitively, each level of the skip list has about half the num-
ber of nodes of the previous level, so we expect the total

Insert (k){ number of levels to be about O(logn)

First call Search(k), let pLeft be the leftmost elem <= k in L_1 e Similarly, each time we add another level, we cut the search

Insert k in L_1, to the right of pLeft time in half except for a constant overhead

i=2; e So after O(logn) levels, we would expect a search time of

while (rand()<= p){ O(logn)

insert k in the appropriate place in L_i; e We will now formalize these two intuitive observations
}

13 15

Height of Skip List ——— Height of Skip List ———

I_ I_

e For some key, i, let X; be the maximum height of 7 in the

skip list.
e Q: What is the probability that X, > 2logn?
o A: If p=1/2, we have: e T his probability gets small as n gets large
13 2logn e In particular, the probability of having a skip list of size ex-
P(X;>2logn) = (5) ceeding 2logn is o(1)
_ 1 e If an event occurs with probability 1 — o(1), we say that it
© (2logn)2 occurs with high probability
_ i e Key Point: The height of a skip list is O(logn) with high
n2 probability.
e Thus the probability that a particular key ¢ achieves height
e 1
2logn is 2
16 . 18
—— Height of Skip List — —— In-Class Exercise Trick ——
e QQ: What is the probability that any key achieves height
2logn?
e Al We want A trick for computing expectations of discrete positive random
P(Xq1>2logn or Xo >2logn or ... or X, > 2logn) variables:

By a Union Bound, this probability is no more than .
e Let X be a discrete r.v., that takes on values from 1 to n

P(Xq1>klogn)+ P(Xo > klogn) 4+ ---+ P(Xn > klogn) n
E(X)= > P(X >1i)

=1

Which equals:

no1 n
2=
i=1

17 19

Why? Search Time ———

n e Its easier to analyze the search time if we imagine running
Z P(X2>i) = PX=1)+PX=2)+PX=3)+... the search backwards
i=1 + P(X=2)+P(X=3)4+P(X=4)+... e Imagine that we start at the found node v in the bottommost
list and we trace the path backwards to the top leftmost
+ P(X=3)+P(X=4)+P(X=5)+... . P P
n senitel, L
e This will give us the length of the search path from L to v
= 1+ P(X=1+2+P(X=2)+3+P(X=3) +... which is the time required to do the search
= E(X)
20 ' 22
In-Class Exercise — Backwards Search ——
Q: How much memory do we expect a skip list to use up? SLFback(v){
while (v !'= L){
e Let X; be the number of lists that element i is inserted in. if (Up(v)!=NIL)
e Q: What is P(X; > 1), P(X; >2), P(X; > 3)? v = Up(v);
e Q: What is P(X; > k) for general k7 else
e Q: What is E(X;)? v = Left(v);
e Q:Let X =31, X;. What is E(X)? }r

21 23

L Backward Search ——

e For every node v in the skip list Up(v) exists with probability
1/2. So for purposes of analysis, SLFBack is the same as
the following algorithm:

FlipWalk(v){
while (v != L){
if (COINFLIP == HEADS)

v = Up(v);
else
v = Left(v);
}r
24 .
—— Analysis ——

e For this algorithm, the expected number of heads is exactly
the same as the expected number of tails

e Thus the expected run time of the algorithm is twice the
expected number of upward jumps

e Since we already know that the number of upward jumps
is O(logn) with high probability, we can conclude that the
expected search time is O(logn)

25

