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Today’s Outline

• Fractional Knapsack Wrapup

• Midterm Review
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Proof

• Assume the objects are sorted in order of cost per pound.

Let vi be the value for item i and let wi be its weight.

• Let xi be the fraction of object i selected by greedy and let

V be the total value obtained by greedy

• Consider some arbitrary solution, B, and let x′i be the fraction

of object i taken in B and let V ′ be the total profit obtained

by B

• We want to show that V ′ ≤ V or that V − V ′ ≥ 0
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Proof

• Let k be the smallest index with xk < 1

• Note that for i ≤ k, xi = 1 and for i > k, xi = 0

• You will show that for all i,

(xi − x′i)
vi
wi
≥ (xi − x′i)

vk
wk
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Proof

V − V ′ =
n∑

i=1

xivi −
n∑

i=1

x′ivi (1)

=
n∑

i=1

(xi − x′i) ∗ vi (2)

=
n∑

i=1

(xi − x′i) ∗ wi
(
vi
wi

)
(3)

≥
n∑

i=1

(xi − x′i) ∗ wi
(
vk
wk

)
(4)

≥
(
vk
wk

)
∗

n∑

i=1

(xi − x′i) ∗ wi (5)

≥ 0 (6)
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Proof

• Note that the last step follows because vk
wk

is positive and

because:
n∑

i=1

(xi − x′i) ∗ wi =
n∑

i=1

xiwi −
n∑

i=1

x′i ∗ wi (7)

= W −W ′ (8)

≥ 0. (9)

• Where W is the total weight taken by greedy and W ′ is the

total weight for the strategy B

• We know that W ≥W ′
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In-Class Exercise

Consider the inequality:

(xi − x′i)
vi
wi
≥ (xi − x′i)

vk
wk

• Q1: Show this inequality is true for i < k

• Q2: Show it’s true for i = k

• Q3: Show it’s true for i > k
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Q1

(xi − x′i)
vi
wi
≥ (xi − x′i)

vk
wk

• Q1: Show that the inequality is true for i < k

• For i < k, (xi − x′i) ≥ 0

• If (xi − x′i) = 0, trivially true. Otherwise, can divide both

sides of the inequality by xi − x′i to get

vi
wi
≥ vk
wk
.

• This is true since the items are sorted by profit per weight
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Q2

(xi − x′i)
vi
wi
≥ (xi − x′i)

vk
wk

• Q2: Show that the inequality is true for i = k

• When i = k, we have

(xk − x′k)
vk
wk
≥ (xk − x′k)

vk
wk

• Which is true since the left side equals the right side
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Q3

(xi − x′i)
vi
wi
≥ (xi − x′i)

vk
wk

• Q3: Show that the inequality is true for i > k

• For i < k, (xi − x′i) ≤ 0

• If (xi−x′i) = 0, trivially true. Otherwise can divide both sides

of the inequality by xi − x′i to get

vi
wi
≤ vk
wk
.

• This is obviously true since the items are sorted by profit per

weight

• Note that the direction of the inequality changed when we

divided by (xi − x′i), since it is negative
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Midterm Info

• Midterm will be Tuesday, Sept. 30th at regular class time

and place

• You can bring 2 pages of “cheat sheets” to use during the

exam. You can also bring a calculator. Otherwise the exam

is closed book and closed note.

• Note that the web page contains links to prior classes and

their midterms. Many of the questions on my midterm will

be similar in flavor to these past midterms!
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Midterm Review Session

• I will have a review session Monday, Sept 29th at 5:30pm in

FEC 141 (the conference room on the first floor of FEC)

• Maxwell will also have a review session

• Please come with questions
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Midterm

• 5 questions, about 20 points each

• Hard but fair

• There will be some time pressure, so make sure you can e.g.

solve recurrences both quickly and correctly.

• I expect a class mean of between 60 :( and 70 :) points
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Question 1

Collection of true/false questions and short answer on:

• Asymptotic notation: e.g. I give you a bunch of functions

and ask you to give me the simplest possible theta notation

for each

• Recurrences: e.g. I ask you to solve a recurrence

• Dynamic Programming: general concepts, string alignment,

matrix multiplication shortest common subsequence (know

resource bounds for these algorithms)

• Greedy Algorithms: general concepts, activity selection, frac-

tional knapsack (know resource bounds for these algorithms)
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Question 2

• A question on recurrence relations

• like problems 1,2,3 of hw 2

• You’ll need to know annihilators, change of variables, han-

dling homogeneous and non-homogeneous parts of recur-

rences, recursion trees, and the Master Method

• You’ll need to know the formulas for sums of convergent and

divergent geometric series
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Question 3

• Asymptotic notation

• Similar to hw problem 3.1-2, 3.1-5, 3.1-7
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Question 4

• Recurrence proof using induction (i.e. the susbstitution method)

• You’ll need to give base case, inductive hypothesis and then

show the inductive step

• Similar to Exercise 15.2-3, Exercise 4.2-1 and Exercise 4.2-3
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Questions 5

• Question on Dynamic Programming

• Will ask you to solve some problem using Dynamic Program-

ming

• Will likely be some variant on one of the following problems:

string alignment, matrix multiplication, longest common sub-

sequence or the monotonically increasing subsequence prob-

lem of Exercise 15.4-5 from hw2
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Asymptotic Notation

• Let’s now review asymptotic notation

• I’ll review for O notation, make sure you understand the other

four types

• f(n) = O(g(n)) if there exists positive constants c and n0

such that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0

• This means to show that f(n) = O(g(n)), you need to give

positive constants c and n0 for which the above statement is

true!
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Example 1

• Prove that 2n+1 = O(2n)

• Goal: Show there exist positive constants c and n0 such that

2n+1 ≤ c ∗ 2n for all n ≥ n0

2n+1 ≤ c ∗ 2n (10)

2 ∗ 2n ≤ c ∗ 2n (11)

2 ≤ c (12)

• Hence for c = 2 and n0 = 1, 2n+1 ≤ c ∗ 2n for all n ≥ n0
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Example 2

• Prove that n+
√
n = O(n)

• Goal: Show there exist positive constants c and n0 such that

n+
√
n ≤ c ∗ n for all n ≥ n0

n+
√
n ≤ c ∗ n (13)

1 +
1√
n
≤ c (14)

(15)

• Hence if we choose n0 = 4, and c = 1.5, then it’s true that

n+
√
n ≤ c ∗ n for all n ≥ n0
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Example 3

• Prove that 22n = O(5n)

• Goal: Show there exist positive constants c and n0 such that

22n ≤ c ∗ 5n for all n ≥ n0

22n ≤ c ∗ 5n (16)

4n ≤ c ∗ 5n (17)

(4/5)n ≤ c (18)

(19)

• Hence for c = 1 and n0 = 1, 22n ≤ c ∗ 5n for all n ≥ n0
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A Procedure

Goal: prove that f(n) = O(g(n))

1. Write down what this means mathematically

2. Write down the inequality f(n) ≤ c ∗ g(n)

3. Simplify this inequality so that c is isolated on the right hand

side

4. Now find a n0 and a c such that for all n ≥ n0, this simplified

inequality is true
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In Class Exercise

Show that n2n is O(4n)

• Q1: What is the exact mathematical statement of what you

need to prove?

• Q2: What is the first inequality in the chain of inequalities?

• Q3: What is the simplified inequality where c is isolated?

• Q4: What is a n0 and c such that the inequality of the last

question is always true?
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