L Shortest Paths Problem —

e Another interesting problem for graphs is that of finding
shortest paths

CS 461' Lecture 20 e Assume we are given a weighted directed graph G = (V, E)

with two special vertices, a source s and a target ¢

Jared Saia e We want to find the shortest directed path from s to t
University of New Mexico e In other words, we want to find the path p starting at s and
ending at t minimizing the function
w(p) = > w(e)
eep

2

Today's Outline —— Negative Weights —

I_ I_

We'll actually allow negative weights on edges

“The path that can be trodden is not the enduring and unchang- The presence of a negative cycle might mean that there is
ing Path. The name that can be named is not the enduring and no shortest path

unchanging Name.” - Tao Te Ching

A shortest path from s to t exists if and only if there is at
least one path from s to t but no path from s to t that
e Single Source Shortest Paths touches a negative cycle

e Dijkstra’s Algorithm In the following example, there is no shortest path from s to ¢t
e Bellman-Ford Algorithm

Single Source Shortest Paths — SSSP Algorithms —

I_ I_

Singles Source Shortest Paths (SSSP) is a more general prob-
lem

SSSP is the following problem: find the shortest path from
the source vertex s to every other vertex in the graph

The problem is solved by finding a shortest path tree rooted
at the vertex s that contains all the desired shortest paths

e A shortest path tree is not a MST s and v. .) i
e pred(v) is the predecessor of v in this tentative shortest path

e The predecessor pointers automatically define a tentative
shortest path tree

Each vertex v in the graph will store two values which describe
a tentative shortest path from s to v

e dist(v) is the length of the tentative shortest path between

SSSP Algorithms —— Defns ——

e We'll now go over some algorithms for SSSP on directed

graphs.
e These algorithms will work for undirected graphs with slight Initially we set:
modification
e In particular, we must specifically prohibit alternating back o dist(s) = 0, pred(s) = NULL
and forth across the same undirected negative-weight edge e For every vertex v # s, dist(v) = oo and pred(v) = NULL

e Like for graph traversal, all the SSSP algorithms will be spe-
cial cases of a single generic algorithm

— Relaxation —— — Correctness —

We call an edge (u,v) tense if dist(u) + w(u,v) < dist(v)

If (u,v) is tense, then the tentative shortest path from s to
v is incorrect since the path s to u and then (u,v) is shorter
Our generic algorithm repeatedly finds a tense edge in the
graph and relaxes it

If there are no tense edges, our algorithm is finished and we
have our desired shortest path tree

e The correctness of the relaxation algorithm follows directly
from three simple claims

e The run time of the algorithm will depend on the way that
we make choices about which edges to relax

—— RelaX —— Claim 1 ——

o If dist(v) # oo, then dist(v) is the total weight of the prede-

Relax(u,v){ cessor chain ending at v:
dist(v) = dist(u) + w(u,v);
pred(v) = u; s — .- — pred(pred(v)) — pred(v) — v.
} e This is easy to prove by induction on the number of edges

in the path from s to v. (left as an exercise)

Claim 2 —— Generic SSSP —__

I_ I_

e We haven't yet said how to detect which edges can be relaxed
or what order to relax them in
e The following Generic SSSP algorithm answers these ques-

e If the algorithm halts, then dist(v) < w(s ~ v) for any path tions

S~ 0. e We will maintain a “bag” of vertices initially containing just
e This is easy to prove by induction on the number of edges the source vertex s

in the path s~ v. (which you will do in the hw) e \Whenever we take a vertex u out of the bag, we scan all of

its outgoing edges, looking for something to relax
e Whenever we successfully relax an edge (u,v), we put v in

the bag
12 . 14
Claim 3 —— InitSSSP ——
I_ I_
e The algorithm halts if and only if there is no negative cycle
InitSSSP(s){
reachable from s.
\ oy L . . . dist(s) = 0;
e The ‘only if’ direction is easy—if there is a reachable negative d(s) = NULL:
cycle, then after the first edge in the cycle is relaxed, the predis/ = o
for all vertices v != s{

cycle always has at least one tense edge.

e The ‘if’ direction follows from the fact that every relaxation
step reduces either the number of vertices with dist(v) = oo
by 1 or reduces the sum of the finite shortest path lengths
by some positive amount.

dist(v) = infinity;
pred(v) = NULL;
}

13 15

L GenericSSSP

GenericSSSP(s){
InitSSSP(s);
put s in the bag;
while the bag is not empty{
take u from the bag;
for all edges (u,v){
if (u,v) is tense{
Relax(u,v);
put v in the bag;
}

16

L Generic SSSP —__

e Just as with graph traversal, using different data structures
for the bag gives us different algorithms

e Some obvious choices are: a stack, a queue and a heap

e Unfortunately if we use a stack, we need to perform ©(2/El)
relaxation steps in the worst case (an exercise for the diligent
student)

e The other possibilities are more efficient

17

—

—

Diskstra’'s Algorithm ———

If we implement the bag as a heap, where the key of a vertex
v is dist(v), we obtain Dijkstra’s algorithm

Dijkstra's algorithm does particularly well if the graph has no
negative-weight edges

In this case, it's not hard to show (by induction, of course)
that the vertices are scanned in increasing order of their
shortest-path distance from s

It follows that each vertex is scanned at most once, and thus
that each edge is relaxed at most once

18

Dijktra’s Algorithm ———

Since the key of each vertex in the heap is its tentative dis-
tance from s, the algorithm performs a DecreaseKey opera-
tion every time an edge is relaxed

Thus the algorithm performs at most |E| DecreaseKey's
Similarly, there are at most |V| Insert and ExtractMin oper-
ations

Thus if we store the vertices in a Fibonacci heap, the total
running time of Dijkstra's algorithm is O(|E| 4 |V]|log |V])

19

Negative Edges — Bellman-Ford ———

I_ I_

e If we replace the bag in the GenericSSSP with a queue, we
get the Bellman-Ford algorithm

e Bellman-Ford is efficient even if there are negative edges
and it can be used to quickly detect the presence of negative
cycles

e If there are no negative edges, however, Dijkstra’s algorithm
is faster than Bellman-Ford

e This analysis assumes that no edge has negative weight

e The algorithm given here is still correct if there are negative
weight edges but the worst-case run time could be exponen-
tial

e The algorithm in our text book gives incorrect results for
graphs with negative edges (which they make clear)

20 22

Example —— Analysis ——

I_ I_

e The easiest way to analyze this algorithm is to break the
execution into phases

e Before we begin the alg, we insert a token into the queue

e Whenever we take the token out of the queue, we begin a
new phase by just reinserting the token into the queue

e The O-th phase consists entirely of scanning the source vertex
S

Four phases of Dijkstra's algorithm run on a graph with no negative edges. e The algorithm ends when the queue contains only the token
At each phase, the shaded vertices are in the heap, and the bold vertex has
just been scanned.
The bold edges describe the evolving shortest path tree.

21 23

—

Invariant —

—

e A simple inductive argument (left as an exercise) shows the
following invariant:

e At the end of the i-th phase, for each vertex v, dist(v) is
less than or equal to the length of the shortest path s ~ v
consisting of i or fewer edges

24

—

Example ——

Four phases of Moore’'s algorithm run on a directed graph with
negative edges.

Nodes are taken from the queue in the order
soabcodfboaedoda ¢ ¢, where ¢ is the token.
Shaded vertices are in the queue at the end of each phase.
The bold edges describe the evolving shortest path tree.

25

Analysis ——

Since a shortest path can only pass through each vertex once,
either the algorithm halts before the |V|-th phase or the graph
contains a negative cycle

In each phase, we scan each vertex at most once and so we
relax each edge at most once

Hence the run time of a single phase is O(|E|)

Thus, the overall run time of Bellman-Ford is O(|V||E|)

26

Book Bellman-Ford ——

—

Now that we understand how the phases of Bellman-Ford
work, we can simplify the algorithm

Instead of using a queue to perform a partial BFS in each
phase, we will just scan through the adjacency list directly
and try to relax every edge in the graph

This will be much closer to how the textbook presents Bellman-
Ford

The run time will still be O(|V||E|)

To show correctness, we'll have to show that are earlier in-
variant holds which can be proved by induction on ¢

27

— Book Bellman-Ford ——

Book-BF (s){
InitSSSP(s);
repeat |V| times{
for every edge (u,v) in E{
if (u,v) is tense{
Relax(u,v);

}

}
for every edge (u,v) in E{
if (u,v) is tense, return ‘‘Negative Cycle’’

}

28

— Take Away ——

e Dijkstra’'s algorithm and Bellman-Ford are both variants of
the GenericSSSP algorithm for solving SSSP

e Dijkstra's algorithm uses a Fibonacci heap for the bag while
Bellman-Ford uses a queue

e Diskstra’s algorithm runs in time O(|E| + |V|log|V|) if there
are no negative edges

e Bellman-Ford runs in time O(|V||E|) and can handle negative
edges (and detect negative cycles)

29

