—— Vertex Cover ——

A vertex cover of a graph is a set of vertices that touches
every edge in the graph

CS 461, Lecture 24 e The decision version of Vertex Cover is: “Does there exist
a vertex cover of size k£ in a graph G7".
Jared Saia e We've proven this problem is NP-Hard by an easy reduction
University of New Mexico from Independent Set

e The optimization version of Vertex Cover is: “What is the
minimum size vertex cover of a graph G?”

e \We can prove this problem is NP-Hard by a reduction from
the decision version of Vertex Cover (left as an exercise).

2
Today’'s Outline ——— Approximating Vertex Cover ———
— y —— App 9
e Approximation algorithms for NP-Hard Problems e Even though the optimization version of Vertex Cover is NP-
e Final Review Hard, it's possible to approximate the answer efficiently
e Course Evaluations e In particular, in polynomial time, we can find a vertex cover
which is no more than 2 times as large as the minimal vertex
cover
1

— Approximation Algorithm ——

e The approximation algorithm does the following until G has

no more edges:

e It chooses an arbitrary edge (u,v) in G and includes both u

and v in the cover

e It then removes from G all edges which are incident to either

u or v

—— Analysis ——

e If we implement the graph with adjacency lists, each edge
need be touched at most once

e Hence the run time of the algorithm will be O(|V| + |E]),
which is polynomial time

e First, note that theis algorithm does in fact return a vertex
cover since it ensures that every edge in GG is incident to some
vertex in C

e Q:Is the vertex cover actually no more than twice the optimal
size?

— Approximation Algorithm ——

Approx-Vertex-Cover (G) {
c =4}
E’ = Edges of G;
while(E’ is not empty){
let (u,v) be an arbitrary edge in E’;
add both u and v to C;
remove from E’ every edge incident to u or v;
X

return C;

—— Analysis ——

e Let A be the set of edges which are chosen in the first line
of the while loop

e Note that no two edges of A share an endpoint

e Thus, any vertex cover must contain at least one endpoint
of each edge in A

e Thus if C'x is an optimal cover then we can say that |Cx| > |A|

e Further, we know that |C| = 2|A]

e This implies that |C| < 2|C x|

Which means that the vertex cover found by the algorithm is no
more than twice the size of an optimal vertex cover.

—— TSP —— Approximation Algorithm ——

e An optimization version of the TSP problem is: “Given a

. . i i , the algorithm first co tes a
weighted graph G, what is the shortest Hamiltonian Cycle of e Given a weighted graph G gorithm Hir mptl

MST for GG, T and arbitrarily selects a root node r of T.

G?"
. . . . It th lets L be the list of the vertices visited in a depth
e This problem is NP-Hard by a reduction from Hamiltonian ¢ . en fets € the] P
Cycle first traversal of T starting at r.

e Finally, it returns the Hamiltonian Cycle, H, that visits the

e However, there is a 2-approximation algorithm for this prob- . .
vertices in the order L.

lem if the edge weights obey the triangle inequality

Triangle Inequality —— Approximation Algorithm ——

I_ I_
e In many practical problems, it's reasonable to make the as-
sumption that the weights, ¢, of the edges obey the triangle
inequality Approx-TSP(G){
e The triangle inequality says that for all vertices u,v,w € V: T = MST(G);

L = the list of vertices visited in a depth first traversal

c(u,w) < e(u, v) + (v, w) of T, starting at some arbitrary node in T;

e In other words, the cheapest way to get from u to w is always H = the Hamiltonian Cycle that visits the vertices in the
to just take the edge (u,w) order L;

e In the real world, this is usually a pretty natural assumption. return H;
For example it holds if the vertices are points in a plane }

and the cost of traveling between two vertices is just the
euclidean distance between them.

Example Run ——— Analysis ——

a d . T d\e
b f g f/ \9

An important fact about this algorithm is that: the cost of the
MST is less than the cost of the shortest Hamiltonian cycle.

e To see this, let T be the MST and let Hx be the shortest
Hamiltonian cycle.

e Note that if we remove one edge from H=x, we have a span-
ning tree, T

e Finally, note that w(Hx*) > w(T") > w(T)

e Hence w(Hx) > w(T)

The top left figure shows the graph G (edge weights are just
the Euclidean distances between vertices); the top right figure
shows the MST T. The bottom left figure shows the depth
first walk on T, W = (a,b,c,b,h,b,a,d, e, f,e,g,e,d,a); the bottom
right figure shows the Hamiltonian cycle H obtained by deleting
repeat visits from W, H = (a,b,c, h,d,e, f,g).

12 14

Analysis —— Analysis ——

I_ I_

The first step of the algorithm takes O(|E| 4+ |V]|log|V]|) (if Now let W be a depth first walk of 7' which traverses each
we use Prim’s algorithm) edge exactly twice (similar to what you did in the hw)

The second step is O(|V|) In our example, W = (a,b,c,b,h,b,a,d,e, f,e, g,e,d,a)

The third step is O(|V]). Note that ¢(W) = 2¢(T)

Hence the run time of the entire algorithm is polynomial This implies that ¢(W) < 2c(Hx*)

13 15

—

—

Analysis ——

Unfortunately, W is not a Hamiltonian cycle since it visits
some vertices more than once

However, we can delete a visit to any vertex and the cost will

not increase because of the triangle inequality. (The path
without an intermediate vertex can only be shorter)

By repeatedly applying this operation, we can remove from

W all but the first visit to each vertex, without increasing

the cost of W.

In our example, this will give us the ordering H = (a, b, c, h,d, e, f, g)

16

Analysis ——

By the last slide, c¢(H) < c¢(W).

So c¢(H) < (W) = 2¢(T) < 2c(Hx)

Thus, c(H) < 2c¢(Hx*)

In other words, the Hamiltonian cycle found by the algorithm
has cost no more than twice the shortest Hamiltonian cycle.

17

— Take Away ——

e Many real-world problems can be shown to not have an effi-

cient solution unless P = NP (these are the NP-Hard pro
lems)

e However, if a problem is shown to be NP-Hard, all hope
not lost!

e In many cases, we can come up with an provably good a
proximation algorithm for the NP-Hard problem.

b-

is

p_

18

—— Final Review Session —

e I will have a review session Monday, Dec. 8th at 5:30pm
FEC 141 (the conference room on the first floor of FEC)
e Please come with questions

in

19

L Final InfO ——— L Topics Covered —

e Asymptotic Analysis and Recurrence Relations (Chapter 3
and 4 in text) : defns of big-O and friends, recursion trees,
master method, annihilators and change of variables

e Dynamic Programming: general concepts, String Alignment,
Matrix Multiplication, Longest Common Subsequence (Chap-
ter 15)

e Greedy Algorithms: general concepts, activity selection, frac-
tional knapsack, MST (Chapter 16)

e Amortized Analysis: Aggregate Method, Accounting Method,
Potential Method, Dynamic Array (Chapter 17)

e Disjoint-Sets: Disjoint Set Operations, Representation as
Forest, Union by Rank and Path Compression, Amortized
Costs (Chapter 21)

e Minimum Spanning Trees: Definition, Kruskal’'s Algorithm,
Prim’'s Algorithm, Safe Edge Theorem and Corollary

e Final will be Tuesday, Dec. 9th at regular class time and
place

e You can bring 2 pages of ‘cheat sheets” to use during the
exam. You can also bring a calculator. Otherwise the exam
is closed book and closed note.

e Note that the web page contains links to prior classes and
their tests. Many of my questions will be similar in flavor to
these past tests!

20 22

Final ———

e Graph Algorithms: Graph Representations, BFS, DFS, Single-
Source Shortest Path, All-Pairs Shortest Paths; Dijkstra's,
Bellman-Ford, Floyd-Warshall (Chapters 22 23,24,25)

e NP-Hard Problems: Definitions of P, NP, co-NP, NP-Hard,
and NP-Complete; General concepts; Reductions (i.e. how
to show that a problem is NP-Hard); Classic NP-Hard prob-
lems: Circuit Satisfiability, SAT, 3-SAT, Coloring, Clique,
Vertex Cover, Independent Set, Hamiltonian Cycle, TSP.
(Chapter 34)

e 4 questions, first is about 40 points, remaining about 20
points each

e There will be some time pressure, so make sure you can solve
problems both quickly and correctly.

e I expect a class mean of between 60 :(and 70 :) points

In general should know the resource bounds for all algorithms
covered.

21

—— Problem 1 - Short Answer ——— —— Problem 3 - Graph Theory ——

Collection of true/false questions, matching and short answer
questions. Some examples:
e Possibility 1: BFS or DFS algorithms (and how to use them)

° T/F questions covering all topics e Possibility 2: Single Source Shortest Paths (Dijkstra’s and
e Multiple Choice e.g. I give you some “real world” problems Bellman-Ford)
and ask you which algorithm we've studied in class that you e Possibility 3: All Pairs Shortest Paths (Floyd-Warshall)

would use to solve each of them; I give you some problems
and ask you how fast they can be solved, etc.

23 25

— Problem 2 - Review —— — Problem 4 - NP-Hardness ——

e Possibility 1: Something like Challenge problem 1 from last
lecture

e Possibility 2: I give you a problem. You tell me if it's in P
or if it's NP-Hard. If the former, you give an algorithm to
solve it in polynomial time. If the later, you give a reduction
which shows that it is NP-Hard.

Possibility 1: Asymptotic Analysis / Recurrence Relations

e Possibility 2: Dynamic Programming (new: *Floyd-Warshall*,
Dijkstra's, and Bellman-Ford)

Possibility 3: Greedy Algorithms (new: Kruskal's and Prim’s)
Possibility 4: Amortized Analysis

24 26

