
University of New Mexico
Department of Computer Science

Second Midterm Examination
CS 461 Data Structures and Algorithms

Fall, 2003

Name:

Email:

• Print your name and email, neatly in the space provided above; print your name at the upper
right corner of every page. Please print legibly.

• This is an closed book exam. You are permitted to use only two pages of “cheat sheets” that
you have brought to the exam and a calculator. Nothing else is permitted.

• Do all problems in this booklet. Show your work! You will not get partial credit if we cannot
figure out how you arrived at your answer.

• Write your answers in the space provided for the corresponding problem. Let us know if you
need more paper.

• Don’t spend too much time on any single problem. If you get stuck, move on to something
else and come back later.

• If any question is unclear, ask us for clarification.

Question Points Score Grader

1 30

2 30

3 20

4 20

Total 100

CS 461 Midterm —Fall, 2003 2 Name:

1. Short Answer

Multiple Choice Questions:

True or False: (circle one, 2 points each)

(a) True or False: If an operation takes O(1) amortized time, then that operation takes
O(1) worst case time. Solution: False: The worst case time could be larger

(b) True or False: If an operation takes O(1) worst case time then that operation takes
O(1) amortized time. Solution: True

(c) True or False: For a graph G and a node v in that graph, the DFS and BFS trees of
G rooted at v always contain the same number of edges. Solution: True

(d) True or False Any BFS tree for a connected graph G is a spanning tree. Solution:
True

(e) True or False Any shortest path tree for a connected graph G is a spanning tree.
Solution: True

(f) True or False Prim’s algorithm is a greedy algorithm but Kruskal’s algorithm is not.
Solution: False. They are both greedy

(g) True or False Prim’s algorithm runs asymptotically faster than Kruskal’s on sparse
graphs. Solution: False. Prim’s algorithm is only asymptotically faster on dense graphs

(h) True or False We can determine if an undirected graph G = (V,E) has a cycle in
O(|V | + |E|) time. Solution: True. We just compute the DFS tree and look for a back
edge

(i) True or False We can determine if an directed graph G = (V,E) has a (directed) cycle
in O(|V |+ |E|) time. Solution: True. Again we just compute the DFS tree and look for
a back edge

(j) True or False Prim’s algorithm uses the Union-Find data structure. Solution: False

(k) True or False In Union-Find with path compression, after we do a Find-Set(x) opera-
tion, the height of the tree that x is in always decreases. Solution: False: x and all its
ancestors become children of the root but the height of the tree may stay the same.

(l) True or False The algorithm for finding all the connected components of a graph uses
the Union-Find data structure. Solution: True

(m) True or False In the best implementation of the Union-Find data structure, the worst
case cost for each operation is O(log∗ n) Solution: False. We showed that the amortized
cost for each operation is O(log∗ n) but the worst case cost could be higher.

(n) True or False In the best implementation of Union-Find, the worst case cost for the
Make-Set operation is O(1). Solution: True

(o) True or False: There exists a graph with 5 nodes where the degree of every node is an
odd number. Solution: False. The sum of the degrees of all the nodes is always an even
number and 5 odd numbers add up to an odd number

CS 461 Midterm —Fall, 2003 3 Name:

2. Amortized Analysis

Consider the following two functions over a linked list, L:

AddRec(){

x.value = 2;

append x to the end of L

}

DecrementRecs(){

for each x in L{

x.value = x.value - 1;

if(x.value==0){

remove x from L

}

}

}

(a) Assume we perform n operations over the list L. What is the worst case run time of
a call to AddRec during this sequence? What is the worst case run time of a call to
DecrementRecs during this sequence? Justify your answers.

Solution: AddRec is O(1) obviously. DecrementRecs is O(n) which can occur if the
first n− 1 calls in the sequence are to AddRec and the last call is to DecrementRecs

CS 461 Midterm —Fall, 2003 4 Name:

(b) Accounting Method Now you will show that the amortized cost of both of these operations
is small using the accounting method.

i. First give the amount that you will charge AddRec and the amount that you will
charge DecrementRecs.

ii. Next show how you will use these charges to pay for the actual costs

iii. Finally write down the amortized cost per operation

Solution: AddRec gets charged 3 dollars, DecrementRecs gets charged 0 dollars. When a
rec is added, we use one dollar immediately to pay the cost of adding the rec. We then
store the extra 2 dollars with the rec. Whenever the value of the rec is decremented, we
use a dollar stored on the rec to pay the cost of that decrement. This shows that the
amortized cost per operation is O(1)

CS 461 Midterm —Fall, 2003 5 Name:

(c) Potential Method You will next use the potential method to get the amortized cost per
operation. Let Li be the linked list after the i-th operation. You will use the following
potential function:

Φi = Sum of the value fields of all records in Li

i. First show that this potential function is valid (i.e. Φ0 = 0 and Φi ≥ 0 for all i)

ii. Next use this potential function to calculate the amortized costs of AddRec and
DecrementRecs. (Recall that ai = ci + Φi − Φi−1 where ai is the amortized cost of
the i-th operation and ci is the actual cost of the i-th operation)

Solution: L0 is the empty list so Φ0 = 0. The values fields of the recs are always
nonnegative so Φi ≥ 0 for all i. Next we compute the amortized costs of the operations.
First we calculate the amortized cost of an AddRec at time i. Note that ci is 1 and
Φi − Φi−1 = 2. Thus ai = 3. Next we calculate the amortized cost of DecrementRecs at
time i. Note that in this case Φi − Φi−1 equals the total number of records which were
decremented in the call to DecrementRecs. Thus ci = Φi−Φi−1 and so ai = 0. So again
we’ve shown that the amortized cost of these operations is O(1)

CS 461 Midterm —Fall, 2003 6 Name:

3. BFS and DFS

(a) Give BFS and DFS trees for the following graph. Assume that BFS and DFS are ini-
tially called with the vertex a and that the edges are stored in the adjacency lists in
alphabetical order. Make sure you label which tree is a BFS tree and which is a DFS
tree

a

b

cd

e

Solution: The edge set {(a, b), (b, c), (c, d)(d, e)} is the DFS tree. The edge set {(a, b), (b, c), (b, d)(d, e)}
is the BFS tree

(b) Give BFS and DFS trees for the following graph. Assume that BFS and DFS are ini-
tially called with the vertex a and that the edges are stored in the adjacency lists in
alphabetical order. Make sure you label which tree is a BFS tree and which is a DFS
tree

a b

cd
Solution: The edge set {(a, b), (a, c), (a, d)} is a BFS tree. The edge set {(a, b), (b, c), (c, d)}
is a DFS tree.

CS 461 Midterm —Fall, 2003 7 Name:

4. Minimum Spanning Tree

Assume we have two graphs G1 = (V1, E1) and G2 = (V2, E2). Also assume that we have T1

which is a MST of G1 and T2 which is MST of G2. Now consider a new graph G = (V,E)
such that V = V1 ∪ V2 and E = E1 ∪ E2 ∪ E3 where E3 is a new set of edges that all cross
the cut (V1, V2).

Following is an example of what G might look like. The dashed edges are E3, the solid edges
in G1 (on the left) are T1, and the solid edges in G2 (on the right) are T2.

G1 G2

Now assume we want to find a MST of the new graph G. Consider the following algorithm
which tries to do this:

Algorithm: Maybe-MST(T1, T2, E3)

(a) emin = a minimum weight edge in E3

(b) T = T1 ∪ T2 ∪ {emin}
(c) return T

CS 461 Midterm —Fall, 2003 8 Name:

Question: Does this algorithm always return a MST for G? If so, prove that the algorithm is
correct using the “safe edge” theorem. If not, give an example input for which the algorithm
fails (i.e. give T1, T2 and E3 for which the algorithm fails)

Solution: The algorithm is not correct. Consider the following graph:

a c

db

10

1

101

1

G1 G2

T1 = {(a, b)} and T2 = {(c, d)}. However the MST of G is {(a, c), (c, b), (b, d)}, which contains
no edge from T1 or T2.

