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1 Fun with Fibonacci Numbers

Each wife of Fibonacci,

FEating nothing that wasn’t starchy,
Weighed as much as the two before her.
His fifth was some signora!

J. A. Lindon
We will now shift direction towards the analysis of sequences, by using two example cases.

Consider the ancestry of a bee: a male bee (a drone) has only a female parent; a female bee has both a male
and female parent. If we examine the generations we see:
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We can see that the number of ancestors in each generation is the sum of the two numbers before it. For
example, our bee has 3 great-grandparents, 2 grand-parents, and 1 parent, and 3=2+1. The number of
ancestors a bee has in generation n is defined by the Fibonacci sequence; we can also see this by applying
the rule of sum.

As a second example, consider light entering two adjacent planes of glass:

~.

At any meeting surfaces (between the two panes of glass, or between the glass and air), the light may either
reflect or continue straight through (refract) as so:
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The example above shows the light bouncing 7 times before it leaves the panes. In general, how many
different paths can the light take if we are told that it bounces n times before leaving the glass panes?

The answer to the question (in case you haven’t guessed) rests with the Fibonacci sequence. We may apply
the rule of sum to the event F constituting all paths through the glass in n bounces. We generate two
separate sub-events, F; and Fs; the following picture graphically illustrates aspects of these two sub-events.

\\ N

Sub-event E; Let F; be the event that the first bounce is not through the center region between the
two panes.

In this case, the light must first bounce off the bottom pane, or else we are dealing with the case of having
zero bounces (there is only one way to have zero bounces). However, the number of remaining paths after
bouncing off the bottom pane is the same as the number of paths entering through the bottom pane and
bouncing n — 1 bounces more. Entering through the bottom pane is the same as entering through the top
pane (but flipped over), so Ej=the number of paths of light bouncing n — 1 times.

Sub-event E; Let Fs be the event that the first bounce is through the center region between the two
panes.

In this case, we consider the two options for the light after the first bounce: it can either leave the glass (in
which case we are dealing with the case of having one bounce through the center region, and there is only
way for the light to bounce once through the center region) or it can bounce yet again on the top of the
upper pane, in which case it is equivalent to the light entering from the top with n — 2 bounces to take along
its path.

By the rule of sum, we thus get the following recurrence relation for L,, the number of paths in which the
light can travel with n bounces.
Fo=1

=2
Fo=F, 1+ F, 2
Stump a Professor

What is a recurrence relation for three panes of glass? This question once stumped an anonymous professor
in a science discipline, but now you should be able to solve it with a bit of effort. Aren’t you proud of your
knowledge?
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2 Solving Recurrence Relations

”...for in laughter all that is evil comes together, but
is pronounced holy and absolved by its own bliss;
and if this is my alpha and omega, that all that
is heavy and grave should become light; all that is
body, dancer; all that is spirit bird — and verily, that
is my alpha and omega: Oh how should I not lust
after eternity and after the nuptial ring of rings, the

ring of recurrence?”
Friedrich Nietzsche,

Thus Spoke Zarathustra

2.1 Sequence Operators and Annihilators

‘We have shown that several different problems can be expressed as Fibonacci sequences, but we do not know
how to explicitly compute the n’th Fibonacci number yet. Our best method so far will have us compute the
first through n — 1’th Fibonacci number first, which requires many operations!

In order to solve recurrences such as the Fibonacci numbers, we will first understand operations on sequences
of numbers. Suppose we are given a sequence of numbers A = (ag, a1, az,as, a4, -+ ). We can naturally define
some operators on this sequence:

e We can multiply the sequence by a constant to get:
cA = (cay, ca, caz, cas,caq, -+ )
e We can shift the sequence to the left:
EA = (a1,a2,a3,a4, )
e We can add two sequences, A = (ag, a1, az,a3,a4," - ), B = (bg, b1,ba,b3,bs,---) to get:

A+ B = (ag + bo,a1 +b1,as + bz, a3 + b3, as + ba,- - +)

We can understand these operators better by looking at an actual sequence (the powers of 2):
T =(2°2',222% ...)
e Multiplying T by a constant ¢ = 2 gives:
2T = (2x 20,2 x 28,2 x 22,2 x 23,...) = (21,2223 2% ...)
e Shifting 7" by one place to the left, we get:
ET = (2',22,23,24 ...)
where E is simply the left-shift operator (i.e. it shifts a sequence to the left).

e Adding the sequences ET and —27T gives:

El — 27 = (2! —2',22 - 22,23 2% 2 2% ...) =(0,0,0,0,---)
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2.2 Properties of Operators

It turns out that the distributive property holds for these operators, so we may also rewrite ET — 2T as
(E—2)T. Another interesting point to realize is that (E—2)T = (0,0,0,0, - - -). In other words, the operator
(E —2) annihilates T (i.e. it transforms T into the sequence of zeroes); (E — 2) is called an annihilator of T
It is obvious that multiplication by 0 will thus trivially annihilate every sequence; because of this triviality,
as a technical matter, we do not consider multiplication by 0 to be an annihilator.

What if we applied the operator (E — 3) to our sequence T'7:

(E-3)T = ET+(-3)T

= (24,2323 )+ (-3 x 2%, -3 x 2!, -3 x 2% ...)
(2-3)x2%(2-3)x2,,(2-3) x2%--.)
(2-3)T=-T

The operator (E —3) did very little to our sequence T’ it just flipped the sign of each number in the sequence.
In fact, we will soon see that only (E — 2) will annihilate T', and all other simple operators will affect T" in
very minor ways. Thus, if we know the annihilator of the sequence, we also know what the sequence must
look like.

In general, (E — ¢) annihilates any sequence A of the form (agct). For example, suppose you are given the
recurrence R:

7“0:3

Tiv1 = o7

This recurrence is of the form R = (3 x 5%), as can be verified:

To = 3

r = 57‘0:5X3

rp = bri=5x(5x3)=5"x3

ry = 57‘2:5X(52X3):53x3
o= bri1=5x(5"1x3) =5 x3

Thus, (E — 5) annihilates R, and you can confirm this at home by explicitly doing the transformation.

What does (E — ¢) do to other sequences A = (apd‘) when d # ¢? Lets find out:

(E—-c)A = (E —c){ag,aod,apd?, apd?,---)
= Elag,aod, apd?,agd?,- - -) — clag, apd, agd?, apd?, - - -)
= {aod,aod?, apd®,---) — (cag, caod, capd?, cagd®,- - -
aod — cag, agd® — cagd, agd® — capd?,---)
(d — ¢)ag, (d — ¢)aopd, (d — c)apd?,---)
d (ao, apd, agd?, - - -)

(
(
(
(d—c)A

—¢)
—¢)

So we have a more rigorous confirmation that an annihilator annihilates exactly one type of sequence, but
multiplies other similar sequences by a constant.
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2.3 Multiple Operators

We have studied how to apply one operator to a sequence, but what about applying more than one operator
to a sequence. For example, we can multiply a sequence A = (a;) by a constant d and then by a constant c,
resulting in the sequence (cd)A. Alternatively, we may multiply the sequence by a constant ¢ and then shift
it to the left to get E(cI") which is the same thing as applying the operators in the reverse order: ¢(ET).
We can also shift the sequence twice to the left, E(ET'), which we will write in shorthand as ET.

‘We now have the tools to solve a whole host of recurrence problems. For example, what annihilates C' =
(2" 4+ 3%)? Well, we know that (E — 2) annihilates (2°) while leaving (3) essentially unscathed. Similarly,
(E — 3) annihilates (3%) while leaving (2¢) essentially unscathed. Thus, if we apply both operators, we see
that (E — 2)(E — 3) annihilates our sequence C.

In general, (E — a)(E — b) will annihilate only all sequences of the form (cja’ + cob?) (we assume a # b).
We will often multiply out the operators into the shorthand notation E* — (a + b)E + ab. It is left as an
exhilarating exercise to the student to verify that this shorthand actually does represent another way of
looking at the operator (i.e. that (E? — (a + b)E + ab) A gives the same sequence as (E — a)(E — b)A).



