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We now know enough to solve the recurrence for Fibonacci Numbers. Specifically, we can notice that the
recurrence Fo =0, Fy =1, F; = F; 1 + F;_5 is annihilated by EZ—-E-1:

(B> ~E-1)(F) = EXE)-E(F)—(F)
= (Fi2) — (Fip1) — (F)
= (Fiy2— Fiy1 — F)
= (0)

If we factor E? — E — 1 into its roots (using the Quadratic Equation) we get:

E°-E-1=(E-9¢)(F-9)
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5

where ¢ = 115 and ¢ = 153

Thus, we know that (E — ¢)(E — ¢) annihilates (F;) and this means that F} is of the form:
F; = c¢' + &¢*
In order to get the constants ¢ and ¢, we analyze the initial conditions conditions Fy = 0, F; = 1, which give

us the set of equations

Fo: 0 = C+é

F 1 = c<1+‘/5)+é<1_\/5>
2 2

We have 2 equations and 2 unknowns, and we solve them to get ¢ =

A 1 ..
and ¢ = 50 SO that our explicit

5

formula for the 7’th Fibonacci number is:

p_ 1 (1+vB) 1 (1=
- A NAG

It is quite amazing that F; turns out to be an integer, with all the square roots in its formula; however, if
we do all the math correctly, we will see that all the square roots will always cancel out or disappear when
we plug in integral values for i.

0.1 Degenerate Cases

Before we decide that we can now solve all recurrences, we should note that in our above formulation of
(E — a)(E — b), we assumed that a # b. What does the sequence (E — a)(E — a) = (E — a)? annihilate? Tt
turns out that this degenerate sequence will annihilate sequences such as (ia*), as we can see:

(E—a)(id") = ((i+1)a*™ — (a)ia®)
= ((i+Da"*" —ia™)
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((i4+1—=1d)a")
— <ai+1>
(E—-a)*(ia’) = (E-a){a"™)
= (0
From this we can generalize to:
(E — @)™ annihilates (p(i)a*) (1)

where p(i) is any polynomial in i of degree n — 1. As an example, (E — 1)3 annihilates the sequence
(1% x 1%y = (i) = (1,4,9,16,25,...), since p(i) = i* is a polynomial of degree n — 1 = 2.

As a review, try to explain the answers to the following questions:
Q: What does (E — 3)(E — 2)(E — 1) annihilate?

A: 1% 4 928 + ¢33F

Q: What does (E — 3)%(E — 2)(E — 1) annihilate?

A: 1% + 228 + (c3k + cq)3F

0.2 Summary

In summary, we have learned the following things about sequences:

Consider two sequences of numbers:

A= <a,0,0,1,a2,0,3,a4, .. > and B = <b0, bl,bg,b3,b4, ce >

We can multiply by a constant. cA = (cay, cai, caz, cas,caa, .. .)

We can shift to the left: EA = (a1,a2,a3,a4,...)

We can shift n positions to the left: E"A = (an, @nt1,Gnt2, Gntgy---)

We can add two sequences: A+ B = (ag + by, a; + by, as + by, as + bz, aq + by, ...)

Notice that we do not have a multiplication operator for two sequences. Multiplication of two sequences is
usually accomplished by convolution, which is a more elaborate process than we need for our purposes so
far.

We have also learned some things about annihilators.

(E — a) annihilates only all sequences of the form (cpa’)

(E — a)(E — b) annihilates only all sequences of the form (coa® + c1b°)

(E—ao)(E—ay)...(E—a,) annihilates only sequences of the form (coal +c1al +...c"a%), here a; # a;,
when i # j

(E — a)? annihilates only sequences of the form ((coi + c1)at)

(E — a)" annihilates only sequences of the form (p(i)a'), degree(p(i)) =n — 1

The general expressions in the annihilator box above are really the most important things to remember about
annihilators because they help you to solve any recurrence for which you can write down an annihilator. The
general method is:

e write down the annihilator for the recurrence
e factor the annihilator
e determine what sequence each factor annihilates

e put the sequences together
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e solve for constants of the solution by using initial conditions

For example, consider the recurrence R:

To = 1;7‘1 = 5;7"2 =17
r; = Tri_q1—16r;_o+ 12r;_3

We go through the steps described above:
e write down the annihilator. From the definition of the recurrence, we can see that E3—7E2+16E—12

will annihilate the recurrence since r; — 7r; 1 + 167r;_o — 12r; _3 = 0.

e factor. We can factor the annihilator by hand or our favorite program to get: E> — 7TE2 4 16E — 12 =
(E-2)*E-3)

¢ determine sequences. Our little chart above shows that (E—2)? annihilates ((ai+b) x 2%) and (E—3)
annihilates (d x 3")

e put together. Putting together the two sequences gives that (E — 2)?(E — 3) annihilates {((ai + b) x
2t 4 d x 3%)

e solve. Since we know that ro = 1;7; = 5;r, = 17, we have three equations in three unknowns:

1 = (@ax0+b6)2°+d3°=b+d
5 = (ax14+b)2" +d3' =2a+2b+3d
17 = (a*2+0)22+d3*> =8a+4b+9d

We can solve these equations to get a =1,0=0, d = 1.

Our final solution to the recurrence is thus r; = i2° + 3%, which we can verify by hand.

0.3 Solving recurrences containing non-homogeneous parts

We continue with the following observation:
(E — a)F annihilates polynomial in 7 a®
of degree k — 1

This turns out to be very important. Consider the example of height-balanced trees. Let a, be the smallest
number of nodes needed to obtain a height balanced tree of height n.

One of the subtrees must have a height of n — 1. If it didn’t, the tree couldn’t have a height of n. The other
subtree may have any height, but this is a height-balanced tree. Height-balanced trees have the property
that the heights of subtrees differ by at most 1. Therefore the other subtree may have a height of either
n — 1 or n — 2. Since we are counting the smallest number of nodes, it must have height n — 2.

This leads to the recurrence equation:

= _ _ 1
an an—1 +  an—2 +
height n—1 height n—2 T0Ot

We refer to the terms in the equation involving a; as the homogeneous terms and the rest as the non-
homogeneous terms. We know that E? — E — 1 annihilates the homogeneous part, a, = ap_1 + an_2.
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Let us try applying this annihilator to the entire equation:

(E? —E —1){(a;) = E*a;)—E{a;) — 1{a;)
(@it2) — (ait1) — (i)
(@iv2 — aip1 — ag)

= (1,1,1,...)

I

This is close to what we want, but (1,1,1,...) is not quite (0,0,0,...). It is clear, though, that E — 1
annihilates (1,1,1,...). Thus (E?> — E — 1)(E — 1) annihilates a, = an—1 + -2 + 1.

We can easily factor E2 — E — 1, and we know what (E — c) annihilates. Thus a, = c1¢" + ™ + c51™,
where ¢ = 1‘;—‘/5 and ¢ = #

All that remains is to find the constants ¢, ¢, and c3. The boundary conditions give us two equations, but
we need a third to find three unknowns. We can calculate as from the recurrence to accomplish this.

ap:1l = ¢+ 02<Z)0 + c3
= ¢ tcatc3

a1:2 = o' +edl +es
= cp+edto

az:d = ¢’ +cd’ +es

We can solve for ¢, ¢z, and c3 from these three equations.

0.4 Some more examples

Consider an = ay—1 + an—2 + 2. The residue is (2,2,2,...) and the annihilator is (E? — E — 1)(E — 1).
The value of as changes. The equations are now:

ap:1 = c1+ca+tc3
@2 = co+cad+cs
as:hH = cq§2 +02$2+C3

Consider an = ay—1 + an—2 + 3. The residue is (3,3,3,...) and the annihilator is (E? — E — 1)(E — 1).
The value of as changes. The equations are now:

ap:1 = ¢ +cg+c3
@m:2 = co+cad+oes
az:6 = c¢’ +c20” +c3

Consider a,, = a—1+an—2+2". The residue is (1,2,4,8,...) and the annihilator is (E> —E — 1)(E —2).
The equations are now:

ap:1 = c1+ca+c3
co + cag + 2c3
as:4 = cd’+ chgg + 4c3

a1:2
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Consider a,, = ay—1+an—2+n. The residue is (1,2,3,4,...) and the annihilator is (E? —E—1)(E —1)2.
The equations are now:

ap:1l = c1+catcy

a1:2 = chp+cap+(cs+ca)
as:4 = cp®+ cz<£2 + (2¢3+ ca)
az:9 = c¢®+ 02q33 + (3¢c3 + ca)

Consider a,, = a,,_1+a,_2+n?. The residueis (1,4,9,25,...) and the annihilator is (E?—~E—1)(E—1)3.
The equations are now:

ap:1 = c¢1+cg+ecos

a1:2 = ch+cap+(cs+ca+ocs)

az:4 = cd® + 20 + (2%c3 4 2¢4 + c5)
az:15 = c¢® 4 cag® + (3%c3 + 3ca + ¢5)
as1:25 = c¢t+cadt + (4%c3 4 4cq + cs)

Consider a,, = ap_1+ an—a +n? —2". The residue is (1 — 1,4 —4,9— 8,25 —16,...) and the annihilator
is (E2 — E — 1)(E — 1)3(E — 2). The equations can be calculated from the annihilator.

Consider a,, = an_1+an_2+¢". The annihilator is (B2 —E—1)(E—¢) = (E—¢)?(E—¢). The equations
can be calculated from the annihilator. (Other recurrence solving methods will have a “inteference”
problem with this equation, while the operator method does not.)

Our method does not work on a,, = a,_1 + % or a, = G,_1 + lgn, as % and Ign do not have
annihilators. Our tool, as it stands, is limited




