CS 461, Lecture 14

Jared Saia
University of New Mexico

L Today's Outline ——

e Course Feedback
e Data Structures for Disjoint Sets

L Course Feedback ——

e I'll try to address feedback for the class as a group. If you
have individual needs that I do not address, please come talk
to me

e Pace of class is above average but not "too fast”, so I will
keep up the same pace.

e Difficulty of hws is also above average but not “too hard",
so I will keep up about the same difficulty.

L Course Feedback ——

e “Air Conditioning” - Too high or too low?7?. I will talk to
Erica about this.

e In-Class Exercises, good and bad points

e Potential functions, Induction and Greedy Algorithm proofs
are most difficult topics so far. I plan to have more in-class
exercises on proofs




Disjoint Sets —— Analysis ——

I_ I_
e \We will analyze this data structure in terms of two parame-
ters:

e A disjoint set data structure maintains a collection {S1, Sp,... S} 1. n, the number of Make-Set operations

of disjoint dynamic sets 2. m, the total number of Make-Set, Union, and Find-Set
e Each set is identified by a representative which is a member operations

of that set e Since the sets are always disjoint, each Union operation re-
e Let’s call the members of the sets objects. duces the number of sets by 1

So after n — 1 Union operations, only one set remains
e Thus the number of Union operations is at most n — 1

Operations ——— Analysis ——

I_ I_
We want to support the following operations:
e Make-Set(x): creates a new set whose only member (and
representative) is z e Note also that since the Make-Set operations are included in
e Union(x,y): unites the sets that contain = and y (call them the total number of operations, we know that m > n
Sz and Sy) into a new set that is Sz U Sy. The new set is e We will in general assume that the Make-Set operations are
added to the data structure while Sy and Sy are deleted. The the first n performed

representative of the new set is any member of the set.
e Find-Set(z): Returns a pointer to the representative of the
(unique) set containing =




Application — Example ——

I_ I_
e Friendster is a web site which keeps track of a social network e Make-Set("“Bob"), Make-Set(“Sue” ), Make-Set("Jane" ), Make-
e When you are invited to join Friendster, you become part of Set(“Joe")
the social network of the person who invited you to join e Union(“Bob”, “Joe")
e In other words, you can read profiles of people who are friends there are now three sets {Bob, Joe}, {Jane}, {Sue}
of your initial friend, or friends of friends of your initial friend, e Union(*“Jane”, “Sue")
etc., etc. there are now two sets {Bob, Joe}, {Jane, Sue}
e If you forge links to new people in Friendster, then your social e Union(“Bob"," Jane™)
network grows accordingly there is now one set {Bob, Joe, Jane, Sue}
8 ' 10 I
Application —— Applications —
— PP — PP

e Consider a simplified version of Friendster
e Every object is a person and every set represents a social

network e We will also see that this data structure is used in Kruskal's
e Whenever a person in the set S; forges a link to a person minimum spanning tree algorithm

in the set Sy, then we want to create a new larger social e Another application is maintaining the connected compo-

network S; US> (and delete S; and S5) nents of a graph as new vertices and edges are added

e For obvious reasons, we want these operation of Union,
Make-Set and Find-Set to be as fast as possible




— Tree Implementation ———

e One of the easiest ways to store sets is using trees.

e Each object points to another object, called its parent, ex-
cept for the leader of each set, which points to itself and

thus is the root of the tree.

12

— Tree Implementation ———

e Make-Set is trivial (we just create one root node)

e Find-Set traverses the parent pointers up to the leader (the

root node).

e Union just redirects the parent pointer of one leader to the

other.

(Notice that unlike most tree data structures, objects do not

have pointers down to their children.)

13

— Algorithms —

Make-Set (x){
parent(x) = x;

}

Find-Set (x){
while(x!=parent (x))

x = parent(x);

return X;

}

Union(x,y){
xParent = Find-Set(x);
yParent = Find-Set(y);
parent (yParent) = xParent;

}

L Example ——

14

Merging two sets stored as trees. Arrows point to parents. The

shaded node has a new parent.

15




—— Analysis ——

e Make-Set takes ©(1) time

e Union takes ©(1) time in addition to the calls to Find-Set

e The running time of Find-Set is proportional to the depth of
x in the tree. In the worst case, this could be ©(n) time

16

— Problem ——

e Problem: The running time of Find-Set is very slow

e Q: Is there some way to speed this up?

e A: Yes we can ensure that the depths of our trees remain
small

e We can do this by using the following strategy when merging
two trees: we make the root of the tree with fewer nodes a
child of the tree with more nodes

e This means that we need to always store the number of
nodes in each tree, but this is easy

17

L The Code ———

Make-Set (x){
parent(x) = x;
size(x) = 1;
}
Union(x,y){
xRep = Find-Set(x);
yRep = Find-Set(y);
if (size(xRep)) > size(yRep)){
parent (yRep) = xRep;
}else{
parent (xRep) = yRep;
size(yRep) = size(yRep) + size(xRep);
}

18

—— Analysis ——

e It turns out that for these algorithms, all the functions run

in O(logn) time

e We will be showing this is the case in the In-Class exercise
e We will show this by showing that the heights of all the trees

are always logarithmic in the number of nodes in the tree

19




In-Class Exercise —_ In-Class Exercise —_

e We will show that the depth of our trees are no more than To prove: Any tree T' with z nodes, created by our algorithms,
O(log x) where z is the number of nodes in the tree has depth no more than logx
e \We will show this using proof by induction on, z, the number
of nodes in the tree e Q1: Show the base case (z = 1)
e We will consider a tree with x nodes and, using the inductive e QQ2: What is the inductive hypothesis?
hypothesis (and facts about our algs), show that it has a e Q3: Complete the proof by giving the inductive step. (hint:
height of of O(logz) note that depth(T) = Max(depth(T1),depth(T2)+1)
20 ' 22
The Facts —— Problem —

e Let T be a tree with z nodes that was created by a call to
the Union Algorithm

e Note that T" must have been created by merging two trees
T1 and T2

e Let T2 be the tree with the smaller number of nodes

e Then the root of T is the root of T'1 and a child of this root
is the root of the tree T2

e Key fact: the number of nodes in T2 is no more than z/2

e Q: O(logn) per operation is not bad but can we do better?
e A: Yes we can actually do much better but it's going to take
some cleverness (and amortized analysis)

21 23




Shallow Threaded Trees

—

One good idea is to just have every object keep a pointer to
the leader of it's set

In other words, each set is represented by a tree of depth 1
Then Make-Set and Find-Set are completely trivial, and they
both take O(1) time

Q: What about the Union operation?

24

Union ———

To do a union, we need to set all the leader pointers of one
set to point to the leader of the other set

To do this, we need a way to visit all the nodes in one of the
sets

We can do this easily by “threading” a linked list through
each set starting with the sets leaders

The threads of two sets can be merged by the Union algo-
rithm in constant time

25

The Code ———

Make-Set (x){
leader(x) = x;
next(x) = NULL;

}

Find-Set (x){
return leader(x);

The Code m———

Union(x,y){
xRep = Find-Set(x);
yRep = Find-Set(y);
leader(y) = xRep;

while(next (y) !'=NULL){

y = next(y);
leader(y) = xRep;
}

next(y) = next(xRep);

next (xRep) = yRep;

26

27




— Example —— — Problem ——

e The main problem here is that in the worst case, we always
get unlucky and choose to update the leader pointers of the

(3 (3
e Yy P

larger set
e Instead let's purposefully choose to update the leader point-
Merging two sets stored as threaded trees. ers of the smaller set
Bold arrows point to leaders; lighter arrows form the threads. e This will require us to keep track of the sizes of all the sets,
Shaded nodes have a new leader. but this is not difficult
28 . 30
Analysis —— The Code —
— y —

e Worst case time of Union is a constant times the size of the
larger set

e So if we merge a one-element set with a n element set, the
run time can be ©(n)

e In the worst case, it's easy to see that n operations can take
©(n?) time for this alg ¥

Make-Weighted-Set (x){
leader(x) = x;

NULL;

1;

next (x)

size(x)

29 31




The Code ———

Weighted-Union(x,y){
xRep = Find-Set(x);
yRep = Find-Set (y)
if (size(xRep)>size(yRep){
Union(xRep,yRep);
size(xRep) = size(xRep) + size(yRep);
}elsed{
Union(yRep,xRep) ;
size(yRep) = size(xRep) + size(yRep);
}

32

—— Analysis ——

e The Weighted-Union algorithm still takes @(n) time to merge
two n element sets

e However in an amortized sense, it is more efficient:

e A sequence of m Make-Weighted-Set operations and n Weighted-
Union operations takes O(m+nlogn) time in the worst case.

33




