CS 362, Lecture 16

Jared Saia
University of New Mexico

L Today's Outline ——

e Minimum Spanning Trees

—

—

Graph Definition ——

Recall that a graph is a pair of sets (V, F).

We call V the vertices of the graph

E is a set of vertex pairs which we call the edges of the
graph.

In an undirected graph, the edges are unordered pairs of
vertices and in a directed graph, the edges are ordered pairs.
We assume that there is never an edge from a vertex to itself
(no self-loops) and that there is at most one edge from any
vertex to any other (no multi-edges)

|V| is the number of vertices in the graph and |E| is the
number of edges

Graph DefnS ——

A graph G/ = (V',E’) is a subgraph of G = (V,E) if V! CV
and E'C E

If (u,v) is an edge in a graph, then u is a neighbor of v

For a vertex v, the degree of v, deg(v), is equal to the number
of neighbors of v

A path is a sequence of edges, where each successive pair of
edges shares a vertex and all edges are disjoint

A graph is connected if there is a path from any vertex to
any other vertex

A disconnected graph consists of several connected compo-
nents which are maximal connected subgraphs

Two vertices are in the same component if and only if there
is a path between them

Graph DefnS —— Example ——

I_ I_

A cycle is a path that starts and ends at the same vertex
and has at least one edge

A graph is acyclic if no subgraph is a cycle. Acyclic graphs
are also called forests

e A tree is a connected acyclic graph. It's also a connected
component of a forest.

A spanning tree of a graph G is a subgraph that is a tree
and also contains every vertex of G. A graph can only have
a spanning tree if it's connected

e A spanning forest of G is a collection of spanning trees, one
for each connected component of G

A weighted graph and its minimum spanning tree

Minimum Spanning Tree Problem Applications —

I_ I_

e Suppose we are given a connected, undirected weighted graph
e That is a graph G = (V, E) together with a function w: F —

R that assigns a weight w(e) to each edge e. (We assume e Creating an inexpensive road network to connect cities

the weights are real numbers) e Wiring up homes for phone service with the smallest amount
e Our task is to find the minimum spanning tree of G, i.e., the of phone wire

spanning tree T' minimizing the function e Finding a good approximation to the TSP problem

w(T) = > wle)
eceT

Generic MST Algorithm —— Safe edges —

I_ I_

A cut (S,V —S) of a graph G = (V,E) is a partition of V
An edge (u,v) crosses the cut (S,V —S) if one of its endpoints

Maintains an acylic subgraph A of the input graph G

e A is a subgraph of the MST of G is in S and the other isin V — S
e The algorithm iteratively adds safe edges to the set A until e A cut respects a set of edges A if no edge in A crosses the
A contains n — 1 edges (and so is a spanning tree). cut.

An edge is a light edge crossing a cut if its weight is the
minimum of any edge crossing the cut

Need to define what it means for an edge to be safe for A

Generic MST Algorithm —— Theorem ——

I_ I_

Generic-MST(G,w){
A= {3};

)) Let G = (V,E) be a connected, undirected graph with a real-
while (A does not form a spanning tree){

valued weight function w defined on E. Let A be a subset of
E that is included in some minimum spanning tree for G. Let
(S,V — 8) be any cut of G that respects A and let (u,v) be a
light edge crossing (S,V — S). Then edge (u,v) is safe for A

find an edge (u,v) that is *safe* for A;
A = A union (u,v);
}
return A;

}

9 11

—— Proof —— —— Corollary ——

e Let T be a minimum spanning tree that includes some set of Let G = (V,E) be a connected, undirected graph with a real-
edges A valued weight function w defined on E. Let A be a subset of
e Assume that T does not contain the light edge e = (u,v) E that is included in some minimum spanning tree for G, and
e Since T is connected, it contains a unique path from u to v, let C = (V,, E;) be a connected component (tree) in the forest
and at least one edge €’ on this path crosses the cut Gy = (V,A). If (u,v) is a light edge connecting C to some other
e Note that w(e) < w(e’) by assumption component in G4, then (u,v) is safe for A

e Removing ¢’ from the minimum spanning tree and adding e

gives us a new spanning tree, T’
e T’ has total weight no more than T. Proof: The cut (V,V —V) respects A, and (u,v) is a light edge
e Thus the edge e is in fact contained in some MST. for this cut. Therefore (u,v) is safe for A.

12 14

Example —— Two MST algorithms —

I_ I_

e There are two major MST algorithms, Kruskal’'s and Prim's

e In Kruskal's algorithm, the set A is a forest. The safe edge
added to A is always a least-weighted edge in the graph that
connects two distinct components

e In Prim’s algorithm, the set A forms a single tree. The safe
edge added to A is always a least-weighted edge connecting
the tree to a vertex not in the tree

Proving that every safe edge is some minimum spanning tree.

13 15

—— Kruskal's Algorithm ——

e Q: In Kruskal's algorithm, how do we determine whether or
not an edge connects two distinct connected components?

e A: We need some way to keep track of the sets of vertices
that are in each connected components and a way to take
the union of these sets when adding a new edge to A merges
two connected components

e What we need is the data structure for maintaining disjoint
sets (aka Union-Find) that we discussed last week

16

—— Kruskal's Algorithm ——

MST-Kruskal (G,w){
for (each vertex v in V)
Make-Set (v);
sort the edges of E into nondecreasing order by weight;
for (each edge (u,v) in E taken in nondecreasing order){
if (Find-Set (u) !=Find-Set (v)){
A = A union (u,v);
Set-Union(u,v);

}

return A;

17

Example Run ———

Kruskal’'s algorithm run on the example graph. Thick edges are in A.
Dashed edges are useless.

18

-
—— Correctness?

e Correctness of Kruskal's algorithm follows immediately from
the corollary

e Each time we add the lightest weight edge that connects two
connected components, hence this edge must be safe for A

e This implies that at the end of the algorith, A will be a MST

19

ime? o .
— Runtime? — Prim’'s Algorithm ———

e In Prim’s algorithm, the set A maintained by the algorithm
forms a single tree.

e The runtime fo the Kruskal's alg. will depend on the imple- e The tree starts from an arbitrary root vertex and grows until
mentation of the disjoint-set data structure. We'll assume it spans all the vertices in V
the implementation with union-by-rank and path-compression e At each step, a light edge is added to the tree A which
which we showed has amortized cost of log*n connects A to an isolated vertex of G4 = (V, A)

e By our Corollary, this rule adds only safe edges to A, so when
the algorithm terminates, it will return a MST

20 22

i ?
— Runtime? —_ — Example Run ———

e Time to sort the edges is O(|E|log |E])

e Total amount of time for the |V| Make-Sets and up to |E]
Set-Unions is O((|V| + |E|) log* |V])

e Since G is connected, |E| > |V|—-1 and so O((|[V|+]|E|) log* |V]) =
O(|E|log* |V|) = O(|E|log | E])

e Total amount of additional work done in the for loop is just

O(E) Prim’s algorithm run on the example graph, starting with the
e Thus total runtime of the algorithm is O(|E|log |E|) bottom vertex.
e Since |E| < |V|2, we can rewrite this as O(|E|log V) At each stage, thick edges are in A, an arrow points along A’s

safe edge, and dashed edges are useless.

21 23

—— An Implementation ——

e To implement Prim’'s algorithm, we keep all edges adjacent
to A in a heap

e When we pull the minimum-weight edge off the heap, we
first check to see if both its endpoints are in A

e If not, we add the edge to A and then add the neighboring
edges to the heap

e If we implement Prim’s algorithm this way, its running time
is O(|E|log |E|) = O(|E|log |V])

e However, we can do better

24

— Prim’'s Algorithm ———

e We can speed things up by noticing that the algorithm visits
each vertex only once

e Rather than keeping the edges in the heap, we will keep a
heap of vertices, where the key of each vertex v is the weight
of the minimum-weight edge between v and A (or infinity if
there is no such edge)

e Each time we add a new edge to A, we may need to decrease
the key of some neighboring vertices

25

Prim's ———

We will break up the algorithm into two parts, Prim-Init and
Prim-Loop

Prim(V,E,s){

}

Prim-Init(V,E,s);
Prim-Loop(V,E,s);

Prim-Init ———

—

Prim-Init(V,E,s){

}

for each vertex v in V - {s}{
if ((v,s) is in E){
edge(v) = (v,s);
key(v) = w((v,s));
Yelse{
edge(v) = NULL;
key(v) = infinity;
}
}
Heap-Insert(v);

26

27

—— Prim-Loop ——— Note ——

Prim-Loop(V,E,s){
A={};
for (i =1 to V| - 1){
v = Heap-ExtractMin();
add edge(v) to A;
for (each edge (u,v) in E){
if (u is not in A AND key(u) > w(u,v)){
edge(u) = (u,v);

e This analysis assumes that it is fast to find all the edges that
are incident to a given vertex

e We have not yet discussed how we can do this

e This brings us to a discussion of how to represent a graph in

Heap-DecreaseKey (u,w(u,v));
a computer

28 30

Runtime? Graph Representation ———

I_ - I_

e The runtime of Prim’'s is dominated by the cost of the heap
operations Insert, ExtractMin and DecreaseKey

e Insert and ExtractMin are each called O(|V|) times

e DecreaseKey is called O(]E|) times, at most twice for each
edge

e If we use a Fibonacci Heap, the amortized costs of Insert and
DecreaseKey is O(1) and the amortized cost of ExtractMin
is O(log |V])

e Thus the overall run time of Prim's is O(|E| 4 |V]|log |V])

e This is faster than Kruskal's unless E = O(|V|)

There are two common data structures used to explicity repre-
sent graphs

e Adjacency Matrices
e Adjacency Lists

29 31

Adjacency MatrixX —— Example Representations —

a b
b—a] di-{ e
| C~ar-{bf-{d- €]
e The adjacency matrix of a graph G is a |V| x |V| matrix of abcdefghi d w
e s Vi Jasedatan bl-Cc}{e]-T
e For an adjacency matrix A, the entry A[:,5] is 1 if (4,5) € E ¢cl110110000 E . m .
and O otherwise d|011011000 f
e For undirectd graphs, the adjacency matrix is always sym- el011101000 g
metric: Ali,j] = A[j,i]. Also the diagonal elements A[s, i] are /1000110000 h
all zeros g|000000010
h|000000101 i
[h
/000000110 m .
Adjacency matrix and adjacency list representations for the
example graph.
32, 34
Example Graph — Adjacency MatrixX ——
— p P —— Adj y

e Given an adjacency matrix, we can decide in ©(1) time
whether two vertices are connected by an edge.
e We can also list all the neighbors of a vertex in ©(|V]) time
by scanning the row corresponding to that vertex
e This is optimal in the worst case, however if a vertex has few
neighbors, we still need to examine every entry in the row to
@ find them all
e Also, adjacency matrices require @(|V|2) space, regardless of
how many edges the graph has, so it is only space efficient
for very dense graphs

33 35

—— Adjacency ListS ———

e For sparse graphs — graphs with relatively few edges —
we're better off with adjacency lists

e An adjacency list is an array of linked lists, one list per vertex

e Each linked list stores the neighbors of the corresponding
vertex

36

—— Adjacency ListS ———

e The total space required for an adjacency list is O(|V |+ |E|)

e Listing all the neighbors of a node v takes O(1+deg(v)) time

e We can determine if (u,v) is an edge in O(1 + deg(u)) time
by scanning the neighbor list of u

e Note that we can speed things up by storing the neighbors
of a node not in lists but rather in hash tables

e Then we can determine if an edge is in the graph in expected
O(1) time and still list all the neighbors of a node v in O(1+
deg(v)) time

37

