
CS 461, Lecture 2

Jared Saia

University of New Mexico

Today’s Outline

• L’Hopital’s Rule

• Log Facts

• Recurrence Relation Review

• Recursion Tree Method

• Master Method

1

L’Hopital

For any functions f(n) and g(n) which approach infinity and are

differentiable, L’Hopital tells us that:

• limn→∞ f(n)
g(n) = limn→∞ f ′(n)

g′(n)

2

Example

• Q: Which grows faster lnn or
√
n?

• Let f(n) = lnn and g(n) =
√
n

• Then f ′(n) = 1/n and g′(n) = (1/2)n−1/2

• So we have:

lim
n→∞

lnn√
n

= lim
n→∞

1/n

(1/2)n−1/2
(1)

= lim
n→∞

2

n1/2
(2)

= 0 (3)

• Thus
√
n grows faster than lnn and so lnn = O(

√
n)

3



A digression on logs

It rolls down stairs alone or in pairs,

and over your neighbor’s dog,

it’s great for a snack or to put on your back,

it’s log, log, log!

- “The Log Song” from the Ren and Stimpy Show

• The log function shows up very frequently in algorithm anal-

ysis

• As computer scientists, when we use log, we’ll mean log2

(i.e. if no base is given, assume base 2)

4

Definition

• logx y is by definition the value z such that xz = y

• xlogx y = y by definition

5

Examples

• log 1 = 0

• log 2 = 1

• log 32 = 5

• log 2k = k

Note: logn is way, way smaller than n for large values of n

6

Examples

• log3 9 = 2

• log5 125 = 3

• log4 16 = 2

• log24 24100 = 100

7



Facts about exponents

Recall that:

• (xy)z = xyz

• xyxz = xy+z

From these, we can derive some facts about logs

8

Facts about logs

To prove both equations, raise both sides to the power of 2, and

use facts about exponents

• Fact 1: log(xy) = logx+ log y

• Fact 2: log ac = c log a

Memorize these two facts

9

Incredibly useful fact about logs

• Fact 3: logc a = log a/ log c

To prove this, consider the equation a = clogc a, take log2 of both

sides, and use Fact 2. Memorize this fact

10

Log facts to memorize

• Fact 1: log(xy) = logx+ log y

• Fact 2: log ac = c log a

• Fact 3: logc a = log a/ log c

These facts are sufficient for all your logarithm needs. (You just

need to figure out how to use them)

11



Logs and O notation

• Note that log8 n = logn/ log 8.

• Note that log600 n
200 = 200 ∗ logn/ log 600.

• Note that log100000 30∗n2 = 2∗logn/ log 100000+log 30/ log 100000.

• Thus, log8 n, log600 n
600, and log100000 30∗n2 are all O(logn)

• In general, for any constants k1 and k2, logk1
nk2 = k2 logn/ log k1,

which is just O(logn)

12

Take Away

• All log functions of form k1 logk2
k3 ∗nk4 for constants k1, k2,

k3 and k4 are O(logn)

• For this reason, we don’t really “care” about the base of the

log function when we do asymptotic notation

• Thus, binary search, ternary search and k-ary search all take

O(logn) time

13

Important Note

• log2 n = (logn)2

• log2 n is O(log2 n), not O(logn)

• This is true since log2 n grows asymptotically faster than

logn

• All log functions of form k1 logk2
k3
k4 ∗nk5 for constants k1, k2,

k3,k4 and k5 are O(logk2 n)

14

In-Class Exercise

Simplify and give O notation for the following functions. In the

big-O notation, write all logs base 2:

• log 10n2

• log2 n4

• 2log4 n

• log log
√
n

15



Recurrences and Inequalities

• Often easier to prove that a recurrence is no more than some

quantity than to prove that it equals something

• Consider: f(n) = f(n− 1) + f(n− 2), f(1) = f(2) = 1

• “Guess” that f(n) ≤ 2n

16

Inequalities (II)

Goal: Prove by induction that for f(n) = f(n − 1) + f(n − 2),

f(1) = f(2) = 1, f(n) ≤ 2n

• Base case: f(1) = 1 ≤ 21, f(2) = 1 ≤ 22

• Inductive hypothesis: for all j < n, f(j) ≤ 2j

• Inductive step:

f(n) = f(n− 1) + f(n− 2) (4)

≤ 2n−1 + 2n−2 (5)

< 2 ∗ 2n−1 (6)

= 2n (7)

17

Recursion-tree method

• Each node represents the cost of a single subproblem in a

recursive call

• First, we sum the costs of the nodes in each level of the tree

• Then, we sum the costs of all of the levels

18

Recursion-tree method

• Used to get a good guess which is then refined and verified

using substitution method

• Best method (usually) for recurrences where a term like

T (n/c) appears on the right hand side of the equality

19



Example 1

• Consider the recurrence for the running time of Mergesort:

T (n) = 2T (n/2) + n, T (1) = O(1)

n

n/2 n/2

n/4 n/4 n/4 n/4

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

n

n

n

n

20

Example 1

• We can see that each level of the tree sums to n

• Further the depth of the tree is logn (n/2d = 1 implies that

d = logn).

• Thus there are logn+ 1 levels each of which sums to n

• Hence T (n) = Θ(n logn)

21

Example 2

• Let’s solve the recurrence T (n) = 3T (n/4) + n2

• Note: For simplicity, from now on, we’ll assume that T (i) =

Θ(1) for all small constants i. This will save us from writing

the base cases each time.

(n/16)^2 (n/16)^2

n^2

(n/4)^2 (n/4)^2

(n/16)^2

(n/4)^2

(n/16)^2 (n/16)^2 (n/16)^2 (n/16)^2 (n/16)^2 (n/16)^2

n^2

(3/16)n^2

(3/16)^2*n^2

...

22

Example 2

• We can see that the i-th level of the tree sums to (3/16)in2.

• Further the depth of the tree is log4 n (n/4d = 1 implies that

d = log4 n)

• So we can see that T (n) =
∑log4 n
i=0 (3/16)in2

23



Solution

T (n) =
log4 n∑

i=0

(3/16)in2 (8)

< n2
∞∑

i=0

(3/16)i (9)

=
1

1− (3/16)
n2 (10)

= O(n2) (11)

24

Master Theorem

• Divide and conquer algorithms often give us running-time

recurrences of the form

T (n) = aT (n/b) + f(n) (12)

• Where a and b are constants and f(n) is some other function.

• The so-called “Master Method” gives us a general method

for solving such recurrences when f(n) is a simple polynomial.

25

Master Theorem

• Unfortunately, the Master Theorem doesn’t work for all func-

tions f(n)

• Further many useful recurrences don’t look like T (n)

• However, the theorem allows for very fast solution of recur-

rences when it applies

26

Master Theorem

• Master Theorem is just a special case of the use of recursion

trees

• Consider equation T (n) = aT (n/b) + f(n)

• We start by drawing a recursion tree

27



The Recursion Tree

• The root contains the value f(n)

• It has a children, each of which contains the value f(n/b)

• Each of these nodes has a children, containing the value

f(n/b2)

• In general, level i contains ai nodes with values f(n/bi)

• Hence the sum of the nodes at the i-th level is aif(n/bi)

28

Details

• The tree stops when we get to the base case for the recur-

rence

• We’ll assume T (1) = f(1) = Θ(1) is the base case

• Thus the depth of the tree is logb n and there are logb n+ 1

levels

29

Recursion Tree

• Let T (n) be the sum of all values stored in all levels of the

tree:

T (n) = f(n)+a f(n/b)+a2 f(n/b2)+· · ·+ai f(n/bi)+· · ·+aL f(n/bL)

• Where L = logb n is the depth of the tree

• Since f(1) = Θ(1), the last term of this summation is Θ(aL) =

Θ(alogb n) = Θ(nlogb a)

30

A “Log Fact” Aside

• It’s not hard to see that alogb n = nlogb a

alogb n = nlogb a (13)

alogb n = aloga n∗logb a (14)

logb n = loga n ∗ logb a (15)

• We get to the last eqn by taking loga of both sides

• The last eqn is true by our third basic log fact

31



Master Theorem

• We can now state the Master Theorem

• We will state it in a way slightly different from the book

• Note: The Master Method is just a “short cut” for the re-

cursion tree method. It is less powerful than recursion trees.

32

Master Method

The recurrence T (n) = aT (n/b) + f(n) can be solved as follows:

• If a f(n/b) ≤ f(n)/K for some constant K > 1, then T (n) =

Θ(f(n)).

• If a f(n/b) ≥ K f(n) for some constant K > 1, then T (n) =

Θ(nlogb a).

• If a f(n/b) = f(n), then T (n) = Θ(f(n) logb n).

33

Proof

• If f(n) is a constant factor larger than a f(n/b), then the sum

is a descending geometric series. The sum of any geometric

series is a constant times its largest term. In this case, the

largest term is the first term f(n).

• If f(n) is a constant factor smaller than a f(n/b), then the

sum is an ascending geometric series. The sum of any ge-

ometric series is a constant times its largest term. In this

case, this is the last term, which by our earlier argument is

Θ(nlogb a).

• Finally, if a f(n/b) = f(n), then each of the L + 1 terms in

the summation is equal to f(n).

34

Example

• T (n) = T (3n/4) + n

• If we write this as T (n) = aT (n/b) + f(n), then a = 1,b =

4/3,f(n) = n

• Here a f(n/b) = 3n/4 is smaller than f(n) = n by a factor of

4/3, so T (n) = Θ(n)

35



Example

• Karatsuba’s multiplication algorithm: T (n) = 3T (n/2) +

n

• If we write this as T (n) = aT (n/b) + f(n), then a = 3,b =

2,f(n) = n

• Here a f(n/b) = 3n/2 is bigger than f(n) = n by a factor of

3/2, so T (n) = Θ(nlog2 3)

36

Example

• Mergesort: T (n) = 2T (n/2) + n

• If we write this as T (n) = aT (n/b) + f(n), then a = 2,b =

2,f(n) = n

• Here a f(n/b) = f(n), so T (n) = Θ(n logn)

37

Example

• T (n) = T (n/2) + n logn

• If we write this as T (n) = aT (n/b) + f(n), then a = 1,b =

2,f(n) = n logn

• Here a f(n/b) = n/2 logn/2 is smaller than f(n) = n logn by

a constant factor, so T (n) = Θ(n logn)

38

In-Class Exercise

• Consider the recurrence: T (n) = 4T (n/2) + n lgn

• Q: What is f(n) and a f(n/b)?

• Q: Which of the three cases does the recurrence fall under

(when n is large)?

• Q: What is the solution to this recurrence?

39



In-Class Exercise

• Consider the recurrence: T (n) = 2T (n/4) + n lgn

• Q: What is f(n) and a f(n/b)?

• Q: Which of the three cases does the recurrence fall under

(when n is large)?

• Q: What is the solution to this recurrence?

40

Take Away

• Recursion tree and Master method are good tools for solving

many recurrences

• However these methods are limited (they can’t help us get

guesses for recurrences like f(n) = f(n− 1) + f(n− 2))

• For info on how to solve these other more difficult recur-

rences, review the notes on annihilators on the class web

page.

41

Todo

• Read Chapter 3 and 4 in the text

• Work on Homework 1

42


