L'Hopital

—

CS 461, Lecture 2

For any functions f(n) and g(n) which approach infinity and are
differentiable, L'Hopital tells us that:

Jared Saia
University of New Mexico ,
o liMnoo 2% = limy,_ o0 L6
o0 g(n) o0 gr(n)
2
Today's Outline Example

I_ I_

e Q: Which grows faster Inn or /n?
e Let f(n) =Inn and g(n) =+/n
e L'Hopital’s Rule e Then f(n) =1/n and ¢'(n) = (1/2)n"1/?2
e Log Facts e So we have:
e Recurrence Relation Review Inn 1/n
e Recursion Tree Method n'Lmoo—n = JLmOOW (1)
e Master Method
= nILmoom (2)
0 (3)

Thus /n grows faster than Inn and so Inn = O(y/n)

A digression on logs — Examples —

I_ I_
It rolls down stairs alone or in pairs,
and over your neighbor’s dog,
it's great for a snack or to put on your back, e logl=0
it’'s log, log, log! e log2=1
- “The Log Song” from the Ren and Stimpy Show e log32=5
e log2k =k
e The log function shows up very frequently in algorithm anal-
ysis Note: logn is way, way smaller than n for large values of n
e As computer scientists, when we use log, we'll mean logs
(i.e. if no base is given, assume base 2)
4 |
Definition — Examples —
I_ I_ b
o |O(_3]:.7> 9=2
e |l0g, y is by definition the value z such that z# =y e |0g5 125 =3
e z!99:Y = y by definition e 109416 =2
e 1095424100 = 100

Facts about exponents — Incredibly useful fact about logs —

I_ I_

Recall that:
e Fact 3: log.a =1loga/logec
o (zY)* = x¥*
o xVy? = g¥t? To prove this, consider the equation a = ¢/°9¢¢, take log, of both
sides, and use Fact 2. Memorize this fact
From these, we can derive some facts about logs

Facts about logs — Log facts to memorize —

I_ I_

To prove both equations, raise both sides to the power of 2, and

F 1: 1 = |
use facts about exponents e Fact og(zy) =logz +logy

e Fact 2: loga® =cloga

e Fact 3: log.a =loga/logc
e Fact 1: log(zy) = logz + logy
e Fact 2: loga® =rcloga
9 g These facts are sufficient for all your logarithm needs. (You just

need to figure out how to use them)
Memorize these two facts

L Logs and O notation ———

Note that loggn = logn/log 8.
Note that loggggn229 = 200 % logn/ log 600.

Thus, loggn, 10900 n600, and 109100000 30xn? are all O(logn)
In general, for any constants k1 and ko, Iogk1 nk2 = kpylogn/logky,
which is just O(logn)

12

— Take Away ——

e All log functions of form kj logy, k3*nk4 for constants kq, ko,
k3 and k4 are O(logn)

e For this reason, we don't really “care” about the base of the
log function when we do asymptotic notation

e Thus, binary search, ternary search and k-ary search all take
O(logn) time

13

Note that 109100000 30+n2 = 2xlog n/ log 100000+log 30/ log 100000.

—

Important Note ——

log?2n = (logn)?

log2n is O(log2n), not O(logn)

This is true since Iog2n grows asymptotically faster than
logn

All log functions of form kq Iog],zg k4*nk5 for constants k1, ko,
k3.ka and ks are O(log*2n)

14

In-Class Exercise —_

—

Simplify and give O notation for the following functions. In the
big-O notation, write all logs base 2:

log 10n2
Iog2 n?
2Iog4n

loglog+/n

15

—

Recurrences and InequalitieS ——

e Often easier to prove that a recurrence is no more than some

quantity than to prove that it equals something
e Consider: f(n)=f(n—-1)+f(n-2), fF(1)=f(2)=1

e “Guess” that f(n) <2

16

— Inequalities (Il) ——

Goal: Prove by induction that for f(n) = f(n—1) 4+ f(n — 2),

fW=f@@ =1, f(n)<2"

e Base case: f(1)=1<21 f(2)=1<22
e Inductive hypothesis: for all j <n, f(j) < 2J
e Inductive step:

f(n—=1)+ f(n—-2)
2n—1 + 2n—2
2271

271

f(n)

A CIA

(4)
(5)
(6)
(7)

17

—— Recursion-tree method ——

e Each node represents the cost of a single subproblem in a

recursive call

e First, we sum the costs of the nodes in each level of the tree

e Then, we sum the costs of all of the levels

18

—— Recursion-tree method ——

e Used to get a good guess which is then refined and verified

using substitution method

e Best method (usually) for recurrences where a term like

T(n/c) appears on the right hand side of the equality

19

— Example 1 ——

e Consider the recurrence for the running time of Mergesort:
T(n) = 2T(n/2) +n, T(1) = O(1)

/”\

w2 2 N
RN SN
n/4 n4 n/4 n/4
/ \ / /\H/B n/Z \n/8 n
xoRo@pR X A N A

20

— Example 1 ——

We can see that each level of the tree sums to n

Further the depth of the tree is logn (n/2d = 1 implies that
d=logn).

Thus there are logn + 1 levels each of which sums to n
Hence T'(n) = ©(nlogn)

21

— Example 2 ——

e Let’s solve the recurrence T'(n) = 3T(n/4) + n?

e Note: For simplicity, from now on, we'll assume that T'(z) =
©(1) for all small constants . This will save us from writing
the base cases each time.

m2

/ MZA\MAZ @Eem2
NIt AN AN

ier2 (V162 (Wiep2 (VIe2 (VIE2 (V162 (wiep2 (VIS2 (Wigrz (31622

JN/N/N NN N

22

— Example 2 ——

e We can see that the i-th level of the tree sums to (3/16)n2.

e Further the depth of the tree is loggn (n/4d = 1 implies that
d =logan)

e So we can see that T(n) = ¥1°%"(3/16)in?

23

Solution —— —

—
logan)
T(n) = Y (3/16)'n? (8)
=0
< n? §<3/16)" (9)
=0
_ 1 2
~ 1-(3/16)" (10)
= 0(n?) (11)
24
—— Master Theorem ——

e Divide and conquer algorithms often give us running-time
recurrences of the form

T(n) =aT(n/b) + f(n) (12)

e Where a and b are constants and f(n) is some other function.
e The so-called “Master Method” gives us a general method
for solving such recurrences when f(n) is a simple polynomial.

25

—— Master Theorem ——

e Unfortunately, the Master Theorem doesn’'t work for all func-
tions f(n)

e Further many useful recurrences don't look like T'(n)

e However, the theorem allows for very fast solution of recur-
rences when it applies

26

—— Master Theorem ——

e Master Theorem is just a special case of the use of recursion
trees

e Consider equation T'(n) = aT(n/b) + f(n)

e \We start by drawing a recursion tree

27

—— The Recursion Tree —— Recursion Tree —

e Let T'(n) be the sum of all values stored in all levels of the

e The root contains the value f(n) ¢
ree:

e It has a children, each of which contains the value f(n/b)
e Each of these nodes has a children, containing the value T(n) = f(n)+af(n/b)+a2f(n/b2)+~-~—|—aif(n/bi)—|—-~-—|—aL f(n/bL)
F(n/b?) | |
e In general, level i contains a* nodes with values f(n/b")
e Hence the sum of the nodes at the i-th level is a’f(n/b")

e Where L = logyn is the depth of the tree
e Since f(1) = ©(1), the last term of this summation is ©(al) =
@(alogbn) — @(nlogba)

28 30

—— Details ——— —— A ‘“Log Fact” Aside ———

e It's not hard to see that /%" = plogya
e The tree stops when we get to the base case for the recur-

alogbn — nlogba (13)
rence alogbn — alogan*logba (14)

e We'll assume T(1) = f(1) = ©(1) is the base case
logyn = log,n xlogya (15)

e Thus the depth of the tree is log,n and there are logyn + 1
levels e We get to the last egn by taking log, of both sides
e The last eqn is true by our third basic log fact

29 31

—— Master Theorem —— —— Proof

e If f(n) is a constant factor larger than a f(n/b), then the sum
is a descending geometric series. The sum of any geometric
series is a constant times its largest term. In this case, the
largest term is the first term f(n).

o If f(n) is a constant factor smaller than a f(n/b), then the
sum is an ascending geometric series. The sum of any ge-
ometric series is a constant times its largest term. In this
case, this is the last term, which by our earlier argument is
@(nlogba)_

e Finally, if a f(n/b) = f(n), then each of the L 4+ 1 terms in
the summation is equal to f(n).

e We can now state the Master Theorem

e We will state it in a way slightly different from the book

e Note: The Master Method is just a ‘“short cut” for the re-
cursion tree method. It is less powerful than recursion trees.

32, 34

—— Master Method ——— —— Example ——

The recurrence T(n) = aT(n/b) + f(n) can be solved as follows:
e T(n)=T{Bn/4)+n

e If a f(n/b) < f(n)/K for some constant K > 1, then T'(n) = e If we write this as T'(n) = aT'(n/b) + f(n), then a = 1,b =
O(f(n)). 4/3,f(n) =n

e If a f(n/b) > K f(n) for some constant K > 1, then T(n) = e Here a f(n/b) = 3n/4 is smaller than f(n) =n by a factor of
©(n'°%a). 4/3, so T(n) = ©(n)

o If a f(n/b) = f(n), then T (n) = S(f(n) logyn).

33 35

Example

—

e Karatsuba’s multiplication algorithm: T(n) = 3T(n/2) +

n
o If we write this as T'(n) = aT(n/b) + f(n), then a = 3,b =
2,f(n)=n

e Here a f(n/b) = 3n/2 is bigger than f(n) = n by a factor of
3/2, so T(n) = ©(nl°923)

36

Example

—

e Mergesort: T'(n) =2T(n/2) +n

o If we write this as T'(n) = aT(n/b) + f(n), then a = 2,b =
2,f(n)=n

e Here a f(n/b) = f(n), so T(n) = ©(nlogn)

37

Example

—

e T(n) =T(n/2) +nlogn

e If we write this as T'(n) = aT(n/b) + f(n), then a = 1,b =
2,f(n) =nlogn

e Here a f(n/b) = n/2logn/2 is smaller than f(n) = nlogn by
a constant factor, so T(n) = ©(nlogn)

38

—— In-Class Exercise

e Consider the recurrence: T'(n) = 4T (n/2) +nlgn

e Q: What is f(n) and a f(n/b)?

e Q: Which of the three cases does the recurrence fall under
(when n is large)?

e Q: What is the solution to this recurrence?

39

—— In-Class Exercise ——

e Consider the recurrence: T'(n) = 2T (n/4) +nlgn

e Q: What is f(n) and a f(n/b)?

e Q: Which of the three cases does the recurrence fall under
(when n is large)?

e Q: What is the solution to this recurrence?

40

— Take Away ——

e Recursion tree and Master method are good tools for solving
many recurrences

e However these methods are limited (they can't help us get
guesses for recurrences like f(n) = f(n—1) + f(n —2))

e For info on how to solve these other more difficult recur-
rences, review the notes on annihilators on the class web
page.

41

TodO —

e Read Chapter 3 and 4 in the text
e Work on Homework 1

42

