_ L'Hopital _____

CS 461, Lecture 2

Jared Saia University of New Mexico For any functions f(n) and g(n) which approach infinity and are differentiable, L'Hopital tells us that:

•
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{f'(n)}{g'(n)}$$

Today's Outline _____

- L'Hopital's Rule
- Log Facts
- Recurrence Relation Review
- Recursion Tree Method
- Master Method

Example _____

- Q: Which grows faster $\ln n$ or \sqrt{n} ?
- Let $f(n) = \ln n$ and $g(n) = \sqrt{n}$
- Then f'(n) = 1/n and $g'(n) = (1/2)n^{-1/2}$
- So we have:

$$\lim_{n \to \infty} \frac{\ln n}{\sqrt{n}} = \lim_{n \to \infty} \frac{1/n}{(1/2)n^{-1/2}}$$
(1)

$$= \lim_{n \to \infty} \frac{2}{n^{1/2}}$$
(2)
= 0 (3)

(3)

• Thus \sqrt{n} grows faster than $\ln n$ and so $\ln n = O(\sqrt{n})$

2

A digression on logs

___ Examples _____

It rolls down stairs alone or in pairs, and over your neighbor's dog, it's great for a snack or to put on your back, it's log, log, log!

- "The Log Song" from the Ren and Stimpy Show
 - The log function shows up very frequently in algorithm analysis
 - As computer scientists, when we use log, we'll mean log₂ (i.e. if no base is given, assume base 2)

- $\log 1 = 0$
- $\log 2 = 1$
- log 32 = 5
- $\log 2^k = k$

Note: $\log n$ is way, way smaller than n for large values of n

Facts about exponents	Incredibly useful fact about logs
Recall that: • $(x^y)^z = x^{yz}$	• Fact 3: $\log_c a = \log a / \log c$
• $x^y x^z = x^{y+z}$ From these, we can derive some facts about logs	To prove this, consider the equation $a = c^{\log_c a}$, take \log_2 of both sides, and use Fact 2. Memorize this fact
Facts about logs	¹⁰ Log facts to memorize
To prove both equations, raise both sides to the power of 2, and use facts about exponents	• Fact 1: $\log(xy) = \log x + \log y$ • Fact 2: $\log a^c = c \log a$
 Fact 1: log(xy) = log x + log y Fact 2: log a^c = c log a 	• Fact 3: $\log_c a = \log a / \log c$
• Fact 2. $\log a = c \log a$	These facts are sufficient for all your logarithm needs. (You just need to figure out how to use them)

Memorize these two facts

- Note that $\log_8 n = \log n / \log 8$.
- Note that $\log_{600} n^{200} = 200 * \log n / \log 600$.
- Note that $\log_{100000} 30*n^2 = 2*\log n / \log 100000 + \log 30 / \log 100000$
- Thus, $\log_8 n$, $\log_{600} n^{600}$, and $\log_{100000} 30*n^2$ are all $O(\log n)$
- In general, for any constants k_1 and k_2 , $\log_{k_1}n^{k_2}=k_2\log n/\log k_1$, which is just $O(\log n)$

- $\log^2 n = (\log n)^2$
- $\log^2 n$ is $O(\log^2 n)$, not $O(\log n)$
- \bullet This is true since $\log^2 n$ grows asymptotically faster than $\log n$
- All log functions of form $k_1 \log_{k_3}^{k_2} k_4 * n^{k_5}$ for constants k_1 , k_2 , k_3, k_4 and k_5 are $O(\log^{k_2} n)$

- All log functions of form $k_1 \log_{k_2} k_3 * n^{k_4}$ for constants k_1 , k_2 , k_3 and k_4 are $O(\log n)$
- For this reason, we don't really "care" about the base of the log function when we do asymptotic notation
- Thus, binary search, ternary search and k-ary search all take $O(\log n)$ time

Simplify and give O notation for the following functions. In the big-O notation, write all logs base 2:

- $\log 10n^2$
- $\log^2 n^4$
- 2^{log₄ n}
- $\log \log \sqrt{n}$

Recurrences and Inequalities _____

- Often easier to prove that a recurrence is no more than some quantity than to prove that it equals something
- Consider: f(n) = f(n-1) + f(n-2), f(1) = f(2) = 1

 $= 2^{n}$

• "Guess" that $f(n) \leq 2^n$

- Each node represents the cost of a single subproblem in a recursive call
- First, we sum the costs of the nodes in each level of the tree
- Then, we sum the costs of all of the levels

17

(7)

Example 1

___ Example 2 ____

• Let's solve the recurrence $T(n) = 3T(n/4) + n^2$

• Consider the recurrence for the running time of Mergesort: T(n) = 2T(n/2) + n, T(1) = O(1)

- We can see that each level of the tree sums to \boldsymbol{n}
- Further the depth of the tree is $\log n$ $(n/2^d = 1$ implies that $d = \log n$).
- \bullet Thus there are $\log n+1$ levels each of which sums to n
- Hence $T(n) = \Theta(n \log n)$

- We can see that the *i*-th level of the tree sums to $(3/16)^i n^2$.
- Further the depth of the tree is $\log_4 n \ (n/4^d = 1$ implies that $d = \log_4 n$)
- So we can see that $T(n) = \sum_{i=0}^{\log_4 n} (3/16)^i n^2$

Solution _____

_ Master Theorem _____

$$T(n) = \sum_{i=0}^{\log_4 n} (3/16)^i n^2$$
(8)

<
$$n^2 \sum_{i=0}^{\infty} (3/16)^i$$
 (9)

$$= \frac{1}{1 - (3/16)} n^2 \tag{10}$$

$$= O(n^2) \tag{11}$$

- Unfortunately, the Master Theorem doesn't work for all functions f(n)
- Further many useful recurrences don't look like T(n)
- However, the theorem allows for very fast solution of recurrences when it applies

• Divide and conquer algorithms often give us running-time recurrences of the form

$$T(n) = aT(n/b) + f(n)$$
(12)

- Where a and b are constants and f(n) is some other function.
- The so-called "Master Method" gives us a general method for solving such recurrences when f(n) is a simple polynomial.

- Master Theorem is just a special case of the use of recursion trees
- Consider equation T(n) = a T(n/b) + f(n)
- We start by drawing a recursion tree

- The root contains the value f(n)
- It has a children, each of which contains the value f(n/b)
- Each of these nodes has a children, containing the value $f(n/b^2)$
- In general, level i contains a^i nodes with values $f(n/b^i)$
- ullet Hence the sum of the nodes at the i-th level is $a^if(n/b^i)$

• Let T(n) be the sum of all values stored in all levels of the tree:

$$T(n) = f(n) + a f(n/b) + a^2 f(n/b^2) + \dots + a^i f(n/b^i) + \dots + a^L f(n/b^L)$$

- Where $L = \log_b n$ is the depth of the tree
- Since $f(1) = \Theta(1)$, the last term of this summation is $\Theta(a^L) = \Theta(a^{\log_b n}) = \Theta(n^{\log_b a})$

- The tree stops when we get to the base case for the recurrence
- We'll assume $T(1) = f(1) = \Theta(1)$ is the base case
- \bullet Thus the depth of the tree is $\log_b n$ and there are $\log_b n+1$ levels

• It's not hard to see that $a^{\log_b n} = n^{\log_b a}$

$$a^{\log_b n} = n^{\log_b a} \tag{13}$$

$$a^{\log_b n} = a^{\log_a n * \log_b a} \tag{14}$$

- $\log_b n = \log_a n * \log_b a \tag{15}$
- We get to the last eqn by taking \log_a of both sides
- The last eqn is true by our third basic log fact

Master Theorem _____

___ Proof ____

- We can now state the Master Theorem
- We will state it in a way slightly different from the book
- Note: The Master Method is just a "short cut" for the recursion tree method. It is less powerful than recursion trees.

- If f(n) is a constant factor larger than a f(n/b), then the sum is a descending geometric series. The sum of any geometric series is a constant times its largest term. In this case, the largest term is the first term f(n).
- If f(n) is a constant factor smaller than a f(n/b), then the sum is an ascending geometric series. The sum of any geometric series is a constant times its largest term. In this case, this is the last term, which by our earlier argument is Θ(n^{log_b a}).
- Finally, if a f(n/b) = f(n), then each of the L + 1 terms in the summation is equal to f(n).

The recurrence T(n) = aT(n/b) + f(n) can be solved as follows:

- If $a f(n/b) \leq f(n)/K$ for some constant K > 1, then $T(n) = \Theta(f(n))$.
- If $a f(n/b) \ge K f(n)$ for some constant K > 1, then $T(n) = \Theta(n^{\log_b a})$.
- If a f(n/b) = f(n), then $T(n) = \Theta(f(n) \log_b n)$.

- T(n) = T(3n/4) + n
- If we write this as T(n) = aT(n/b) + f(n), then a = 1, b = 4/3, f(n) = n
- Here a f(n/b) = 3n/4 is smaller than f(n) = n by a factor of 4/3, so $T(n) = \Theta(n)$

___ Example ____

- Karatsuba's multiplication algorithm: T(n) = 3T(n/2) + n
- If we write this as T(n) = aT(n/b) + f(n), then a = 3, b = 2, f(n) = n
- Here a f(n/b) = 3n/2 is bigger than f(n) = n by a factor of 3/2, so $T(n) = \Theta(n^{\log_2 3})$

- $T(n) = T(n/2) + n \log n$
- If we write this as T(n) = aT(n/b) + f(n), then $a = 1, b = 2, f(n) = n \log n$
- Here $a f(n/b) = n/2 \log n/2$ is smaller than $f(n) = n \log n$ by a constant factor, so $T(n) = \Theta(n \log n)$

In-Class Exercise _____

Todo _____

- ullet Consider the recurrence: $T(n)=2T(n/4)+n\lg n$
- Q: What is f(n) and a f(n/b)?
- Q: Which of the three cases does the recurrence fall under (when *n* is large)?
- Q: What is the solution to this recurrence?

- Read Chapter 3 and 4 in the text
- Work on Homework 1

40

_ Take Away _____

- Recursion tree and Master method are good tools for solving many recurrences
- However these methods are limited (they can't help us get guesses for recurrences like f(n) = f(n-1) + f(n-2))
- For info on how to solve these other more difficult recurrences, review the notes on annihilators on the class web page.

42