—— INitSSSP ———

InitSSSP(s){
CS 362, Lecture 21 dist(s) = 0;
pred(s) = NULL;
Jared Saia for all vertices v != s{
University of New Mexico dist(v) = infinity;
pred(v) = NULL;
}

Today's Outline —— GenericSSSP

I_ I_

GenericSSSP(s){
InitSSSP(s);

“The path that can be trodden is not the enduring and unchang- put s in the bag;

ing Path. The name that can be named is not the enduring and
unchanging Name.” - Tao Te Ching

while the bag is not empty{
take u from the bag;
for all edges (u,v){

if (u,v) is tense{
e Bellman-Ford Wrapup

e All-Pairs Shortest Paths

Relax(u,v);
put v in the bag;
}

— Bellman-Ford — — Invariant ———

e If we replace the bag in the GenericSSSP with a queue, we
get the Bellman-Ford algorithm

e Bellman-Ford is efficient even if there are negative edges
and it can be used to quickly detect the presence of negative
cycles

e If there are no negative edges, however, Dijkstra’s algorithm
is faster than Bellman-Ford

e A simple inductive argument (left as an exercise) shows the
following invariant:

e At the end of the i-th phase, for each vertex v, dist(v) is
less than or equal to the length of the shortest path s ~ v
consisting of i or fewer edges

e This implies that the algorithm ends in O(|V|) phases

Analysis —— Example ———

I_ I_
e The easiest way to analyze this algorithm is to break the
execution into phases
e Before we begin the alg, we insert a token into the queue
e Whenever we take the token out of the queue, we begin a
new phase by just reinserting the token into the queue
e The O-th phase consists entirely of scanning the source vertex
S Four phases of the Bellman-Ford algorithm run on a directed
e The algorithm ends when the queue contains only the token graph with negative edges.

Nodes are taken from the queue in the order
soabcodfboaedoda ¢ ¢, where ¢ is the token.
Shaded vertices are in the queue at the end of each phase.
The bold edges describe the evolving shortest path tree.

Analysis —— Book Bellman-Ford ———

I_ I_
Book-BF(s){
InitSSSP(s);
repeat |V| times{
e Since a shortest path can only pass through each vertex once, for every edge (u,v) in E{
either the algorithm halts before the |V|-th phase or the graph if (u,v) is tense{
contains a negative cycle Relax(u,v);
e In each phase, we scan each vertex at most once and so we }
relax each edge at most once }
e Hence the run time of a single phase is O(|E|) }
e Thus, the overall run time of Bellman-Ford is O(|V||E|) for every edge (u,v) in E{
if (u,v) is tense, return ‘‘Negative Cycle’’
}
}
8 ' 10
— Book Bellman-Ford ——— — Take Away —
e Now that we understand how the phases of Bellman-Ford
work, we can simplify the algorithm e Dijkstra's algorithm and Bellman-Ford are both variants of
e Instead of using a queue to perform a partial BFS in each the GenericSSSP algorithm for solving SSSP
phase, we will just scan through the adjacency list directly e Dijkstra's algorithm uses a Fibonacci heap for the bag while
and try to relax every edge in the graph Bellman-Ford uses a queue
e This will be much closer to how the textbook presents Bellman- e Diskstra's algorithm runs in time O(|E| + |V]|log |V]) if there
Ford are no negative edges
e The run time will still be O(|V||E]) e Bellman-Ford runs in time O(|V||E|) and can handle negative
e To show correctness, we'll have to show that are earlier in- edges (and detect negative cycles)

variant holds which can be proved by induction on ¢

—— All-Pairs Shortest Paths — —— APSP

e For the single-source shortest paths problem, we wanted to

find the shortest path from a source vertex s to all the other e The output of our shortest path algorithm will be a pair of
vertices in the graph |V| x |V] arrays encoding all |[V|? distances and predecessors.
e \We will now generalize this problem further to that of finding e Many maps contain such a distance matric - to find the
the shortest path from every possible source to every possible distance from (say) Albuquerque to (say) Ruidoso, you look
destination in the row labeled “Albuquerque” and the column labeled
e In particular, for every pair of vertices v and v, we need to “Ruidoso”
compute the following information: e In this class, we'll focus only on computing the distance array
— dist(u,v) is the length of the shortest path (if any) from e The predecessor array, from which you would compute the
u to v actual shortest paths, can be computed with only minor ad-
— pred(u,v) is the second-to-last vertex (if any) on the short- ditions to the algorithms presented here

est path (if any) from u to v

12 14

L Example ——— L Lots of Single Sources ——

e For any vertex v, we have dist(v,v) = 0 and pred(v,v) =
NULL

e If the shortest path from « to v is only one edge long, then
dist(u,v) = w(u — v) and pred(u,v) = u

e If there's no shortest path from u to v, then dist(u,v) = co
and pred(u,v) = NULL

e Most obvious solution to APSP is to just run SSSP algorithm
|V| times, once for every possible source vertex

e Specifically, to fill in the subarray dist(s,*), we invoke either
Dijkstra's or Bellman-Ford starting at the source vertex s

e We'll call this algorithm ObviousAPSP

13 15

L ObviousAPSP — L Problem ——

e We'd like to have an algorithm which takes O(]V|3) but which
can also handle negative edge weights

e We'll see that a dynamic programming algorithm, the Floyd
Warshall algorithm, will achieve this

e Note: the book discusses another algorithm, Johnson’s al-

ObviousAPSP(V,E,w){
for every vertex s{
dist(s,*) = SSSP(V,E,w,s);

) ¥ gorithm, which is asymptotically better than Floyd Warshall
on sparse graphs. However we will not be discussing this
algorithm in class.

16 . 18
Analysis — Dynamic Programming —
— y — VY g g
e The running time of this algorithm depends on which SSSP e Recall: Dynamic Programming = Recursion 4+ Memorization
algorithm we use e Thus we first need to come up with a recursive formulation
e If we use Bellman-Ford, the overall running time is O(|V|2|E|) = of the problem
o(vV*% e We might recursively define dist(u,v) as follows:
e If all the edge weights are positive, we can use Dijkstra’s in-)
stead, which decreases the run time to ©(|V||E|+|V|?log [V|) = dist(u,v) = 0 ifu=v
o(VP) ming (dist(u, z) + w(z — ’U)) otherwise

17 19

—

—

The problem ———

In other words, to find the shortest path from u to v, try all
possible predecessors x, compute the shortest path from w
to z and then add the last edge v — v

Unfortunately, this recurrence doesn’'t work

To compute dist(u,v), we first must compute dist(u,z) for
every other vertex z, but to compute any dist(u,z), we first
need to compute dist(u,v)

We're stuck in an infinite loop!

20

—

The solution —

To avoid this circular dependency, we need some additional
parameter that decreases at each recursion and eventually
reaches zero at the base case

One possibility is to include the number of edges in the short-
est path as this third magic parameter

So define dist(u,v,k) to be the length of the shortest path
from u to v that uses at most k edges

Since we know that the shortest path between any two ver-
tices uses at most |V| — 1 edges, what we want to compute
is dist(u,v,|V|—1)

21

—

The Recurrencé

0 ifu=w

dist(u,v,k) = { 0o if k=0and u# v

ming (dz'st(u,ac, k—1) 4w — 'u)) otherwise

22

The Algorithm ———

It's not hard to turn this recurrence into a dynamic program-
ming algorithm

Even before we write down the algorithm, though, we can
tell that its running time will be ©(|V|4)

This is just because the recurrence has four variables — w,
v, k and x — each of which can take on |V| different values
Except for the base cases, the algorithm will just be four
nested “for” loops

23

—— DP-APSP — —— Floyd-Warshall —

DP-APSP(V,E,w){

for all vertices u in V{

for all vertices v in V{
e Number the vertices arbitrarily from 1 to |V|

if (u=v)
dist(u,v,0) = 0; e Define dist(u,v,r) to be the shortest path from u to v where
else all intermediate vertices (if any) are numbered r or less
dist(u,v,0) = infinity; e If r = 0, we can’t use any intermediate vertices so shortest
}} path from u to v is just the weight of the edge (if any)
for k=1 to |V|-1{ between v and v
for all vertices u in V{ e If » > 0, then either the shortest legal path from u to v goes
for all vertices u in V{ through vertex r or it doesn’t
dist(u,v,k) = infinity; e We need to compute the shortest path distance from u to v
for all vertices x in V{ with no restrictions, which is just dist(u,v,|V])

if (dist(u,v,k)>dist(u,x,k-1)+w(x,v))
dist(u,v,k) = dist(u,x,k-1)+w(x,v);
3333

24 26

— The Problem —— — The recurrencé ——

e This algorithm still takes O(|V[%) which is no better than the
ObviousAPSP algorithm We get the following recurrence:

e If we use a certain divide and conquer technique, there is a
way to get this down to O(|]V|3log |V]) (think about how you
might do this)

e However, to get down to O(|V|3) run time, we need to use
a different third parameter in the recurrence

w(u — v) ifr=0
dist(u,v,r) = < min{dist(u,v,r — 1),
dist(u,r,r — 1) + dist(r,v,r — 1)} otherwise

25 27

— The Algorithm ——— — Take Away —

FloydWarshall(V,E,w){
for u=1 to |VI{

f =1t \'
or'v o |VI{ e Floyd-Warshall solves the APSP problem in ©(|V|3) time
dist(u,v,0) = w(u,v); . . .
1 even with negative edge weights
e Floyd-Warshall uses dynamic programming to compute APSP

for r=1 to |V|{
for u=1 to |VI{
for v=1 to |VI{
if (dist(u,v,r-1) < dist(u,r,r-1) + dist(r,v,r-1))
dist(u,v,r) = dist(u,v,r-1);

e \We've seen that sometimes for a dynamic program, we need
to introduce an extra variable to break dependencies in the
recurrence.

e We've also seen that the choice of this extra variable can

1 have a big impact on the run time of the dynamic program
else

dist(u,v,r) = dist(u,r,r-1) + dist(r,v,r-1);

333

28 30

—— Analysis ——

e There are three variables here, each of which takes on |V|
possible values

e Thus the run time is ©(|V|3)

e Space required is also ©(|V|3)

29

