
CS 362, Lecture 21

Jared Saia

University of New Mexico

Today’s Outline

“The path that can be trodden is not the enduring and unchang-

ing Path. The name that can be named is not the enduring and

unchanging Name.” - Tao Te Ching

• Bellman-Ford Wrapup

• All-Pairs Shortest Paths

1

InitSSSP

InitSSSP(s){

dist(s) = 0;

pred(s) = NULL;

for all vertices v != s{

dist(v) = infinity;

pred(v) = NULL;

}

}

2

GenericSSSP

GenericSSSP(s){

InitSSSP(s);

put s in the bag;

while the bag is not empty{

take u from the bag;

for all edges (u,v){

if (u,v) is tense{

Relax(u,v);

put v in the bag;

}

}

}

}

3

Bellman-Ford

• If we replace the bag in the GenericSSSP with a queue, we

get the Bellman-Ford algorithm

• Bellman-Ford is efficient even if there are negative edges

and it can be used to quickly detect the presence of negative

cycles

• If there are no negative edges, however, Dijkstra’s algorithm

is faster than Bellman-Ford

4

Analysis

• The easiest way to analyze this algorithm is to break the

execution into phases

• Before we begin the alg, we insert a token into the queue

• Whenever we take the token out of the queue, we begin a

new phase by just reinserting the token into the queue

• The 0-th phase consists entirely of scanning the source vertex

s

• The algorithm ends when the queue contains only the token

5

Invariant

• A simple inductive argument (left as an exercise) shows the

following invariant:

• At the end of the i-th phase, for each vertex v, dist(v) is

less than or equal to the length of the shortest path s ; v

consisting of i or fewer edges

• This implies that the algorithm ends in O(|V |) phases

6

Example

−2

1

2

0 5

4

6 3

s
0

−3

−18

a

b

c

d

e

f 1

2

0 5

4

6 3

s
0

−3

−18

a

b

c

d

e

f

1

2

0 5

4

6 3

s
0

∞

−3

−18

a

b

c

d

e

f1

2

0 5

4

6 3

s
0

∞

∞

∞

∞

∞

∞ −3

−18

a

b

c

d

e

f 1

2

0 5

4

6 3

s
0

∞

∞

∞

−3

−18

a

b

c

d

e

f

6

4

3 6

2

3

74

3

2

2 7

9
−8−8

−8−8−8

−3 −3

−3 −3

−3

1

9

7

2

3

1

Four phases of the Bellman-Ford algorithm run on a directed

graph with negative edges.

Nodes are taken from the queue in the order

s ¦ a b c ¦ d f b ¦ a e d ¦ d a ¦ ¦, where ¦ is the token.

Shaded vertices are in the queue at the end of each phase.

The bold edges describe the evolving shortest path tree.

7

Analysis

• Since a shortest path can only pass through each vertex once,

either the algorithm halts before the |V |-th phase or the graph

contains a negative cycle

• In each phase, we scan each vertex at most once and so we

relax each edge at most once

• Hence the run time of a single phase is O(|E|)
• Thus, the overall run time of Bellman-Ford is O(|V ||E|)

8

Book Bellman-Ford

• Now that we understand how the phases of Bellman-Ford

work, we can simplify the algorithm

• Instead of using a queue to perform a partial BFS in each

phase, we will just scan through the adjacency list directly

and try to relax every edge in the graph

• This will be much closer to how the textbook presents Bellman-

Ford

• The run time will still be O(|V ||E|)
• To show correctness, we’ll have to show that are earlier in-

variant holds which can be proved by induction on i

9

Book Bellman-Ford

Book-BF(s){

InitSSSP(s);

repeat |V| times{

for every edge (u,v) in E{

if (u,v) is tense{

Relax(u,v);

}

}

}

for every edge (u,v) in E{

if (u,v) is tense, return ‘‘Negative Cycle’’

}

}

10

Take Away

• Dijkstra’s algorithm and Bellman-Ford are both variants of

the GenericSSSP algorithm for solving SSSP

• Dijkstra’s algorithm uses a Fibonacci heap for the bag while

Bellman-Ford uses a queue

• Diskstra’s algorithm runs in time O(|E|+ |V | log |V |) if there

are no negative edges

• Bellman-Ford runs in time O(|V ||E|) and can handle negative

edges (and detect negative cycles)

11

All-Pairs Shortest Paths

• For the single-source shortest paths problem, we wanted to

find the shortest path from a source vertex s to all the other

vertices in the graph

• We will now generalize this problem further to that of finding

the shortest path from every possible source to every possible

destination

• In particular, for every pair of vertices u and v, we need to

compute the following information:

– dist(u, v) is the length of the shortest path (if any) from

u to v

– pred(u, v) is the second-to-last vertex (if any) on the short-

est path (if any) from u to v

12

Example

• For any vertex v, we have dist(v, v) = 0 and pred(v, v) =

NULL

• If the shortest path from u to v is only one edge long, then

dist(u, v) = w(u→ v) and pred(u, v) = u

• If there’s no shortest path from u to v, then dist(u, v) = ∞
and pred(u, v) = NULL

13

APSP

• The output of our shortest path algorithm will be a pair of

|V | × |V | arrays encoding all |V |2 distances and predecessors.

• Many maps contain such a distance matric - to find the

distance from (say) Albuquerque to (say) Ruidoso, you look

in the row labeled “Albuquerque” and the column labeled

“Ruidoso”

• In this class, we’ll focus only on computing the distance array

• The predecessor array, from which you would compute the

actual shortest paths, can be computed with only minor ad-

ditions to the algorithms presented here

14

Lots of Single Sources

• Most obvious solution to APSP is to just run SSSP algorithm

|V | times, once for every possible source vertex

• Specifically, to fill in the subarray dist(s, ∗), we invoke either

Dijkstra’s or Bellman-Ford starting at the source vertex s

• We’ll call this algorithm ObviousAPSP

15

ObviousAPSP

ObviousAPSP(V,E,w){

for every vertex s{

dist(s,*) = SSSP(V,E,w,s);

}

}

16

Analysis

• The running time of this algorithm depends on which SSSP

algorithm we use

• If we use Bellman-Ford, the overall running time is O(|V |2|E|) =

O(|V |4)

• If all the edge weights are positive, we can use Dijkstra’s in-

stead, which decreases the run time to Θ(|V ||E|+|V |2 log |V |) =

O(|V |3)

17

Problem

• We’d like to have an algorithm which takes O(|V |3) but which

can also handle negative edge weights

• We’ll see that a dynamic programming algorithm, the Floyd

Warshall algorithm, will achieve this

• Note: the book discusses another algorithm, Johnson’s al-

gorithm, which is asymptotically better than Floyd Warshall

on sparse graphs. However we will not be discussing this

algorithm in class.

18

Dynamic Programming

• Recall: Dynamic Programming = Recursion + Memorization

• Thus we first need to come up with a recursive formulation

of the problem

• We might recursively define dist(u, v) as follows:

dist(u, v) =





0 if u = v

minx
(
dist(u, x) + w(x→ v)

)
otherwise

19

The problem

• In other words, to find the shortest path from u to v, try all

possible predecessors x, compute the shortest path from u

to x and then add the last edge u→ v

• Unfortunately, this recurrence doesn’t work

• To compute dist(u, v), we first must compute dist(u, x) for

every other vertex x, but to compute any dist(u, x), we first

need to compute dist(u, v)

• We’re stuck in an infinite loop!

20

The solution

• To avoid this circular dependency, we need some additional

parameter that decreases at each recursion and eventually

reaches zero at the base case

• One possibility is to include the number of edges in the short-

est path as this third magic parameter

• So define dist(u, v, k) to be the length of the shortest path

from u to v that uses at most k edges

• Since we know that the shortest path between any two ver-

tices uses at most |V | − 1 edges, what we want to compute

is dist(u, v, |V | − 1)

21

The Recurrence

dist(u, v, k) =





0 if u = v

∞ if k = 0 and u 6= v

minx
(
dist(u, x, k − 1) + w(x→ v)

)
otherwise

22

The Algorithm

• It’s not hard to turn this recurrence into a dynamic program-

ming algorithm

• Even before we write down the algorithm, though, we can

tell that its running time will be Θ(|V |4)

• This is just because the recurrence has four variables — u,

v, k and x — each of which can take on |V | different values

• Except for the base cases, the algorithm will just be four

nested “for” loops

23

DP-APSP

DP-APSP(V,E,w){

for all vertices u in V{

for all vertices v in V{

if(u=v)

dist(u,v,0) = 0;

else

dist(u,v,0) = infinity;

}}

for k=1 to |V|-1{

for all vertices u in V{

for all vertices u in V{

dist(u,v,k) = infinity;

for all vertices x in V{

if (dist(u,v,k)>dist(u,x,k-1)+w(x,v))

dist(u,v,k) = dist(u,x,k-1)+w(x,v);

}}}}}

24

The Problem

• This algorithm still takes O(|V |4) which is no better than the

ObviousAPSP algorithm

• If we use a certain divide and conquer technique, there is a

way to get this down to O(|V |3 log |V |) (think about how you

might do this)

• However, to get down to O(|V |3) run time, we need to use

a different third parameter in the recurrence

25

Floyd-Warshall

• Number the vertices arbitrarily from 1 to |V |
• Define dist(u, v, r) to be the shortest path from u to v where

all intermediate vertices (if any) are numbered r or less

• If r = 0, we can’t use any intermediate vertices so shortest

path from u to v is just the weight of the edge (if any)

between u and v

• If r > 0, then either the shortest legal path from u to v goes

through vertex r or it doesn’t

• We need to compute the shortest path distance from u to v

with no restrictions, which is just dist(u, v, |V |)

26

The recurrence

We get the following recurrence:

dist(u, v, r) =





w(u→ v) if r = 0

min{dist(u, v, r − 1),

dist(u, r, r − 1) + dist(r, v, r − 1)} otherwise

27

The Algorithm

FloydWarshall(V,E,w){

for u=1 to |V|{

for v=1 to |V|{

dist(u,v,0) = w(u,v);

}}

for r=1 to |V|{

for u=1 to |V|{

for v=1 to |V|{

if (dist(u,v,r-1) < dist(u,r,r-1) + dist(r,v,r-1))

dist(u,v,r) = dist(u,v,r-1);

else

dist(u,v,r) = dist(u,r,r-1) + dist(r,v,r-1);

}}}}

28

Analysis

• There are three variables here, each of which takes on |V |
possible values

• Thus the run time is Θ(|V |3)

• Space required is also Θ(|V |3)

29

Take Away

• Floyd-Warshall solves the APSP problem in Θ(|V |3) time

even with negative edge weights

• Floyd-Warshall uses dynamic programming to compute APSP

• We’ve seen that sometimes for a dynamic program, we need

to introduce an extra variable to break dependencies in the

recurrence.

• We’ve also seen that the choice of this extra variable can

have a big impact on the run time of the dynamic program

30

