L Classes of Problems ——

We can characterize many problems into three classes:

CS 362, Lecture 23 e P is the set of yes/no problems that can be solved in poly-
nomial time. Intuitively P is the set of problems that can be
solved *“quickly”

e NP is the set of yes/no problems with the following property:
If the answer is yes, then there is a proof of this fact that
can be checked in polynomial time

e CO-NP is the set of yes/no problems with the following prop-
erty: If the answer is no, then there is a proof of this fact
that can be checked in polynomial time
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Today's Outline —— NP-Hard ———

I_ I_

e A problem I is NP-hard if a polynomial-time algorithm for
N would imply a polynomial-time algorithm for every problem
in NP
e In other words: 1II is NP-hard iff If II can be solved in
polynomial time, then P=NP
e Review e In other words: if we can solve one particular NP-hard prob-
e NP-Hardness and three more reductions lem quickly, then we can quickly solve any problem whose
solution is quick to check (using the solution to that one
special problem as a subroutine)
e If you tell your boss that a problem is NP-hard, it's like saying:
“Not only can't I find an efficient solution to this problem
but neither can all these other very famous people.” (you
could then seek to find an approximation algorithm for your
problem)




NP-Complete —— Independent Set —

I_ I_
e A problem is NP-Easy if it is in NP
e A problem is NP-Complete if it is NP-Hard and NP-Easy
e In other words, a problem is NP-Complete if it is in NP but e Independent Set is the following problem: “Does there exist
is at least as hard as all other problems in NP. a set of k£ vertices in a graph G with no edges between them?”
e If anyone finds a polynomial-time algorithm for even one NP- e In the hw, you'll show that independent set is NP-Hard by a
complete problem, then that would imply a polynomial-time reduction from CLIQUE
algorithm for every NP-Complete problem e Thus we can now use Independent Set to show that other
e Thousands of problems have been shown to be NP-Complete, problems are NP-Hard
so a polynomial-time algorithm for one (i.e. all) of them is
incredibly unlikely
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Example —— Vertex Cover ——

I_ I_

NP-hard

e A vertex cover of a graph is a set of vertices that touches

Q every edge in the graph
e The problem Vertex Cover is: "Does there exist a vertex
@ NP-complete cover of size k in a graph G?"
e We can prove this problem is NP-Hard by an easy reduction
from Independent Set

A detailed picture of what we think the world looks like.




—

Key Observation ——

Key Observation: If I is an independent set in a graph G =
(V,E), then V — I is a vertex cover.

Thus, there is an independent set of size k iff there is a vertex
cover of size |V| — k.

For the reduction, we want to show that a polynomial time
algorithm for Vertex Cover can give a polynomial time algo-
rithm for Independent Set

The Reduction ——

—

We are given a graph G = (V, E) and a value k and we must
determine if there is an independent set of size k in G.

To do this, we ask if there is a vertex cover of size |[V|—k in
G.

If so then we return that there is an independent set of size
kin G

If not, we return that there is not an independent set of size
kin G

—— The Reduction ——

‘graph G=(V,E), k‘M‘graph G=((V,E), |[V|— k:‘

VertexCover

o(1)
‘True or False ‘<—‘ True or False‘
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L Graph Coloring ——

e A c-coloring of a graph Gisa map C:V — {1,2,...,c} that
assigns one of ¢ ‘“colors” to each vertex so that every edge
has two different colors at its endpoints

e The graph coloring problem is: “Does there exist a c-coloring
for the graph G7”

e Even when ¢ = 3, this problem is hard. We call this problem
3Colorable i.e. “Does there exist a 3-coloring for the graph
G7?"
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L 3Colorable — L The Truth Gadget ———

e To show that 3Colorable is NP-hard, we will reduce from
3Sat e The truth gadget is just a triangle with three vertices T, I

e This means that we want to show that a polynomial time al- and X, which intuitively stand for True, False, and other

gorithm for 3Colorable can give a polynomial time algorithm e Since these vertices are all connected, they must have differ-
for 3Sat ent colors in any 3-coloring
e Recall that the 3-SAT problem is just: “Is there any assign- e For the sake of convenience, we will name those colors True,

ment of variables to a 3CNF formula that makes the formula False, and Other
evaluate to true?” e Thus when we say a node is colored “True”, we just mean

e And a 3CNF formula is just a conjunct of a bunch of clauses, that it's colored the same color as the node T

each of which contains exactly 3 variables e.qg.

clause
(avbve) A(bvevd)A(avevd)A(aVvbVd)
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—— Reduction —— —— The Variable Gadgets ——

e The variable gadget for a variable a is also a triangle joining
two new nodes labeled a and @ to node X in the truth gadget

e We are given a 3-CNF formula, F, and we must determine e Node a must be colored either “True” or “False”, and so
if it has a satisfying assignment node @ must be colored either "“False” or “True”, respec-
e To do this, we produce a graph as follows tively.
e The graph contains one truth gadget, one variable gadget
for each variable in the formula, and one clause gadget for x
each clause in the formula @—®

e The variable gadget ensures that each of the literals is colored
either “True" or “False”
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The Clause Gadgets —— Example ———

I_ I_
e Each clause gadget joins three literal nodes to node T in the
truth gadget using five new unlabelled nodes and ten edges
(as in the figure) e Note that the 3-coloring of this example graph corresponds
e This clause gadget ensures that at least one of the three to a satisfying assignment of the formula
literal nodes in each clause is colored “True” e Namely, a = ¢ = True, b = d = False.

e Note that the final graph contains only one node T, only one
node F, only one node a for each variable a and so on
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Example —— Correctness —

I_ I_

Consider the formula (aVvVbVve)A(bvevd)A(aVveVd)A(avbVvd).
Following is the graph created by the reduction:

e The proof of correctness for this reduction is direct

e If the graph is 3-colorable, then we can extract a satisfying
assignment from any 3-coloring, since at least one of the
three literal nodes in every clause gadget is colored “True”

e Conversely, if the formula is satisfiable, then we can color
the graph according to any satisfying assignment
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L Reduction Picture —— L In-Class Exercise ——

Consider the problem 4Colorable: *“Does there exist a 4-coloring
for a graph G?"

e Q1: Show this problem is in NP by showing that there exists
an efficiently verifiable proof of the fact that a graph is 4

‘3CNF formula‘ﬂ‘graph‘

colorable.
N 3Colorable e Q2: Show the problem is NP-Hard by a reduction from the
‘True or False ‘M‘ True or Fa|se‘ problem 3Colorable. In particular, show the fOIIOWing:

— Given a graph G, you can create a graph G’ such that G’
is 4-colorable iff G is 3-colorable.
— Creating G’ from G takes polynomial time

Note: You've now shown that 4Colorable is NP-Complete!
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Wrap Up —— Hamiltonian Cycle ——

I_ I_
e We've just shown that if 3Colorable can be solved in poly-
nomial time then 3-SAT can be solved in polynomial time e A Hamiltonian Cycle in a graph is a cycle that visits every
e This shows that 3Colorable is NP-Hard vertex exactly once (note that this is very different from an
e To show that 3Colorable is in NP, we just need to note that Eulerian cycle which visits every edge exactly once)
we can easily verify that a graph has been correctly 3-colored e The Hamiltonian Cycle problem is to determine if a given
in linear time: just compare the endpoints of every edge graph G has a Hamiltonian Cycle
e Thus, 3Coloring is NP-Complete. e We will show that this problem is NP-Hard by a reduction
e This implies that the more general graph coloring problem is from the vertex cover problem.

also NP-Complete
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L The Reduction ——— L Edge Gadget ——

e To do the reduction, we need to show that we can solve

Vertex Cover in polynomial time if we have a polynomial e The four corner vertices (u,v, 1), (u,v,6), (v,u,1), and (v, u, 6)
time solution to Hamiltonian Cycle. each have an edge leaving the gadget
e Given a graph G and an integer k, we will create another e A Hamiltonian cycle can only pass through an edge gadget
graph G’ such that G’ has a Hamiltonian cycle iff G has a in one of the three ways shown in the figure
vertex cover of size k e These paths through the edge gadget will correspond to one
e As for the last reduction, our transformation will consist of or both of the vertices v and v being in the vertex cover.

putting together several ‘“gadgets”
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Edge Gadget and Cover Vertices ——— Cover Vertices ——

I_ I_

e For each edge (u,v) in G, we have an edge gadget in G’
consisting of twelve vertices and fourteen edges, as shown
below

uv,) uv,2 uv,3 uUvd) (uv5 (uv6)

m ) - e G’ also contains k cover vertices, simply numbered 1 through

vul) vu2) (vu3) wud) (vub) (Wu,b)

An edge gadget for (u,v) and the only possible Hamiltonian paths
through it.
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L Vertex ChainS —— L The Reduction ——

e For each vertex u in GG, we string together all the edge gad-
gets for edges (u,v) into a single vertex chain and then con-

nect the ends of the chain to all the cover vertices e The transformation from G to G/ takes at most O(|V|?) time,
e Specifically, suppose u has d neighbors vq,v,...,v4. Then G’ so the Hamiltonian cycle problem is NP-Hard
has the following edges: e Moreover we can easily verify a Hamiltonian cycle in linear
— d — 1 edges between (u,v;,6) and (u,v;41,1) (for all i time, thus Hamiltonian cycle is also in NP
between 1 and d — 1) e Thus Hamiltonian Cycle is NP-Complete

— k edges between the cover vertices and (u,vq,1)
— k edges between the cover vertices and (u, vy, 6)
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—— The Reduction ——— —— Example —
e It's not hard to prove that if {vy,vo,...,v;} IS @ vertex cover
of G, then G’ has a Hamiltonian cycle ‘/'
e To get this Hamiltonian cycle, we start at cover vertex 1, ‘
traverse through the vertex chain for vy, then visit cover O—@
vertex 2, then traverse the vertex chain for v, and so forth, n
until we eventually return to cover vertex 1 Y=o
e Conversely, one can prove that any Hamiltonian cycle in G’
alternates between cover vertices and vertex chains, and that
the vertex chains correspond to the k vertices in a vertex | )
cover of G T
( \\\;: — —)
Thus, G has a vertex cover of size k iff G’ has a Hamiltonian The original graph G with vertex cover {v,w}, and the transformed graph G’
cycle with a corresponding Hamiltonian cycle (bold edges).

Vertex chains are colored to match their corresponding vertices.
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The Reduction ——

—
o(Iv»)
‘graph G = (V,E), kz‘—>‘graph G"
Hamiltonian Cycle
o(1)
‘True or False‘<—‘True or False‘
32 '
—— Traveling Sales Person ——

e A problem closely related to Hamiltonian cycles is the famous
Traveling Salesperson Problem(TSP)

e The TSP problem is: “Given a weighted graph G, find the
shortest cycle that visits every vertex.

e Finding the shortest cycle is obviously harder than deter-
mining if a cycle exists at all, so since Hamiltonian Path is
NP-hard, TSP is also NP-hard!
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L NP-Hard Games —

e In 1999, Richard Kaye proved that the solitaire game Minesweeper
is NP-Hard, using a reduction from Circuit Satifiability.

e Also in the last few years, Eric Demaine, et. al., proved that
the game Tetris is NP-Hard
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L Challenge Problem —

e Consider the optimization version of, say, the graph coloring
problem: “Given a graph G, what is the smallest number
of colors needed to color the graph?” (Note that unlike the
decision version of this problem, this is not a yes/no question)

e Show that the optimization version of graph coloring is also
NP-Hard by a reduction from the decision version of graph
coloring.

e Is the optimization version of graph coloring also NP-Complete?
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L Challenge Problem —

e Consider the problem 4Sat which is: “Is there any assign-
ment of variables to a 4CNF formula that makes the formula
evaluate to true?”

e Is this problem NP-Hard? If so, give a reduction from 3Sat
that shows this. If not, give a polynomial time algorithm
which solves it.
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L Challenge Problem —

e Consider the following problem: “Does there exist a clique
of size 5 in some input graph G?”

e Is this problem NP-Hard? If so, prove it by giving a reduction
from some known NP-Hard problem. If not, give a polynomial
time algorithm which solves it.
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