
CS 362, Lecture 24

Jared Saia

University of New Mexico

Today’s Outline

• Approximation algorithms for NP-Hard Problems

1

Vertex Cover

• A vertex cover of a graph is a set of vertices that touches

every edge in the graph

• The decision version of Vertex Cover is: “Does there exist

a vertex cover of size k in a graph G?”.

• We’ve proven this problem is NP-Hard by an easy reduction

from Independent Set

• The optimization version of Vertex Cover is: “What is the

minimum size vertex cover of a graph G?”

• We can prove this problem is NP-Hard by a reduction from

the decision version of Vertex Cover (left as an exercise).

2

Approximating Vertex Cover

• Even though the optimization version of Vertex Cover is NP-

Hard, it’s possible to approximate the answer efficiently

• In particular, in polynomial time, we can find a vertex cover

which is no more than 2 times as large as the minimal vertex

cover

3

Approximation Algorithm

• The approximation algorithm does the following until G has

no more edges:

• It chooses an arbitrary edge (u, v) in G and includes both u

and v in the cover

• It then removes from G all edges which are incident to either

u or v

4

Approximation Algorithm

Approx-Vertex-Cover(G){

C = {};

E’ = Edges of G;

while(E’ is not empty){

let (u,v) be an arbitrary edge in E’;

add both u and v to C;

remove from E’ every edge incident to u or v;

}

return C;

}

5

Analysis

• If we implement the graph with adjacency lists, each edge

need be touched at most once

• Hence the run time of the algorithm will be O(|V | + |E|),

which is polynomial time

• First, note that this algorithm does in fact return a vertex

cover since it ensures that every edge in G is incident to some

vertex in C

• Q: Is the vertex cover actually no more than twice the optimal

size?

6

Analysis

• Let A be the set of edges which are chosen in the first line

of the while loop

• Note that no two edges of A share an endpoint

• Thus, any vertex cover must contain at least one endpoint

of each edge in A

• Thus if C∗ is an optimal cover then we can say that |C∗| ≥ |A|
• Further, we know that |C| = 2|A|
• This implies that |C| ≤ 2|C ∗ |

Which means that the vertex cover found by the algorithm is no

more than twice the size of an optimal vertex cover.

7

TSP

• An optimization version of the TSP problem is: “Given a

weighted graph G, what is the shortest Hamiltonian Cycle of

G?”

• This problem is NP-Hard by a reduction from Hamiltonian

Cycle

• However, there is a 2-approximation algorithm for this prob-

lem if the edge weights obey the triangle inequality

8

Triangle Inequality

• In many practical problems, it’s reasonable to make the as-

sumption that the weights, c, of the edges obey the triangle

inequality

• The triangle inequality says that for all vertices u, v, w ∈ V :

c(u,w) ≤ c(u, v) + c(v, w)

• In other words, the cheapest way to get from u to w is always

to just take the edge (u,w)

• In the real world, this is usually a pretty natural assumption.

For example it holds if the vertices are points in a plane

and the cost of traveling between two vertices is just the

euclidean distance between them.

9

Approximation Algorithm

• Given a weighted graph G, the algorithm first computes a

MST for G, T , and then arbitrarily selects a root node r of

T .

• It then lets L be the list of the vertices visited in a depth

first traversal of T starting at r.

• Finally, it returns the Hamiltonian Cycle, H, that visits the

vertices in the order L.

10

Approximation Algorithm

Approx-TSP(G){

T = MST(G);

L = the list of vertices visited in a depth first traversal

of T, starting at some arbitrary node in T;

H = the Hamiltonian Cycle that visits the vertices in the

order L;

return H;

}

11

Example Run

a d

b f

c

h

e

g

a d

b f

c

h

e

g

a d

b f

c

h

e

g

a d

b f

c

h

e

g

The top left figure shows the graph G (edge weights are just

the Euclidean distances between vertices); the top right figure

shows the MST T . The bottom left figure shows the depth

first walk on T , W = (a, b, c, b, h, b, a, d, e, f, e, g, e, d, a); the bottom

right figure shows the Hamiltonian cycle H obtained by deleting

repeat visits from W , H = (a, b, c, h, d, e, f, g).

12

Analysis

• The first step of the algorithm takes O(|E|+ |V | log |V |) (if

we use Prim’s algorithm)

• The second step is O(|V |)
• The third step is O(|V |).

• Hence the run time of the entire algorithm is polynomial

13

Analysis

An important fact about this algorithm is that: the cost of the

MST is less than the cost of the shortest Hamiltonian cycle.

• To see this, let T be the MST and let H∗ be the shortest

Hamiltonian cycle.

• Note that if we remove one edge from H∗, we have a span-

ning tree, T ′

• Finally, note that w(H∗) ≥ w(T ′) ≥ w(T)

• Hence w(H∗) ≥ w(T)

14

Analysis

• Now let W be a depth first walk of T which traverses each

edge exactly twice (similar to what you did in the hw)

• In our example, W = (a, b, c, b, h, b, a, d, e, f, e, g, e, d, a)

• Note that c(W) = 2c(T)

• This implies that c(W) ≤ 2c(H∗)

15

Analysis

• Unfortunately, W is not a Hamiltonian cycle since it visits

some vertices more than once

• However, we can delete a visit to any vertex and the cost will

not increase because of the triangle inequality. (The path

without an intermediate vertex can only be shorter)

• By repeatedly applying this operation, we can remove from

W all but the first visit to each vertex, without increasing

the cost of W .

• In our example, this will give us the ordering H = (a, b, c, h, d, e, f, g)

16

Analysis

• By the last slide, c(H) ≤ c(W).

• So c(H) ≤ c(W) = 2c(T) ≤ 2c(H∗)
• Thus, c(H) ≤ 2c(H∗)
• In other words, the Hamiltonian cycle found by the algorithm

has cost no more than twice the shortest Hamiltonian cycle.

17

Take Away

• Many real-world problems can be shown to not have an effi-

cient solution unless P = NP (these are the NP-Hard prob-

lems)

• However, if a problem is shown to be NP-Hard, all hope is

not lost!

• In many cases, we can come up with an provably good ap-

proximation algorithm for the NP-Hard problem.

18

Final Review Session

• Final Review session will be in class on Thursday Dec. 9th

• Please come with questions

19

Final Info

• Final exam will be Tuesday Dec. 14th from 12:30-2:30 in

our regular classroom.

• You can bring 2 pages of “cheat sheets” to use during the

exam. You can also bring a calculator. Otherwise the exam

is closed book and closed note.

• Note that the web page contains links to prior classes and

their tests. Many of my questions will be similar in flavor to

these past tests!

20

Final

• 5 to 6 questions

• There will be some time pressure, so make sure you can solve

problems both quickly and correctly.

• I expect a class mean of between 60 :(and 70 :) points

21

Topics Covered

• Asymptotic Analysis and Recurrence Relations (Chapter 3

and 4 in text) : defns of big-O and friends, recursion trees,

master method, annihilators and change of variables

• Dynamic Programming: general concepts, String Alignment,

Matrix Multiplication, Longest Common Subsequence (Chap-

ter 15)

• Greedy Algorithms: general concepts, activity selection, frac-

tional knapsack, MST (Chapter 16)

• Amortized Analysis: Aggregate Method, Accounting Method,

Potential Method, Dynamic Array (Chapter 17)

• Disjoint-Sets: Disjoint Set Operations, Representation as

Forest, Union by Rank and Path Compression, Amortized

Costs (Chapter 21)

• Minimum Spanning Trees: Definition, Kruskal’s Algorithm,

Prim’s Algorithm, Safe Edge Theorem and Corollary

22

• Graph Algorithms: Graph Representations, BFS, DFS, Single-

Source Shortest Path, All-Pairs Shortest Paths; Dijkstra’s,

Bellman-Ford, Floyd-Warshall (Chapters 22 23,24,25)

• NP-Hard Problems: Definitions of P, NP, co-NP, NP-Hard,

and NP-Complete; General concepts; Reductions (i.e. how

to show that a problem is NP-Hard); Classic NP-Hard prob-

lems: Circuit Satisfiability, SAT, 3-SAT, Coloring, Clique,

Vertex Cover, Independent Set, Hamiltonian Cycle, TSP.

(Chapter 34)

• Approximation Algorithms: Vertex Cover, TSP, etc.

In general should know the resource bounds for all algorithms

covered.

Example Problem - Short Answer

Collection of true/false questions, matching and short answer

questions. Some examples:

• T/F questions covering all topics

• Multiple Choice e.g. I give you some “real world” problems

and ask you which algorithm we’ve studied in class that you

would use to solve each of them; I give you some problems

and ask you how fast they can be solved, etc.

23

Example Problem - Review

• Possibility 1: Asymptotic Analysis / Recurrence Relations

• Possibility 2: Dynamic Programming (new: *Floyd-Warshall*,

Dijkstra’s, and Bellman-Ford)

• Possibility 3: Greedy Algorithms (new: Kruskal’s and Prim’s)

• Possibility 4: Amortized Analysis

24

Example Problem - Graph Theory

• Possibility 1: BFS or DFS algorithms (and how to use them)

• Possibility 2: Single Source Shortest Paths (Dijkstra’s and

Bellman-Ford)

• Possibility 3: All Pairs Shortest Paths (Floyd-Warshall)

25

Example Problem - NP-Hardness

• Possibility 1: Something like Challenge problem 1 from last

lecture

• Possibility 2: I give you a problem and ask you to prove it’s

NP-Hard by a reduction from another NP-Hard Problem.

• Possibility 3: I give you an NP-Hard Problem and ask you

give an approximation algorithm for it (the problem would

be a variant of something already seen in class)

26

