CS 362, Lecture 25

Jared Saia
University of New Mexico

L Today's Outline ——

e Approximation algorithms for NP-Hard Problems
e Data Migration

— Motivation —

e Performance of large storage system depends on having data
assignment which balances request load

e Optimal layout of data changes with changing workloads

e Want to periodically recompute a new optimal assignment
of data to devices

e Must move data to new optimal assignment as quickly as
possible

— Migration Problem

Given:
e Initial and final configuration of data objects on devices
e Description of the storage system.

Our Goal: To compute a migration plan obeying network con-
straints and using minimal number of time steps.

Key constraint:
In one time step each storage device can be involved in the
transfer of one data object.

—

Assume network is a complete graph

Initial Goal

Demand Graph ——

NS

b, c d a

Demand Graph
d [] °

Output: Assignment of time steps to each edge in demand graph
such that no two edges incident to same node are assigned the

same time step

L Edge Coloring ——

Simple Migration Model:

e Assume fully connected network

e In one time step, each storage device can be involved in the

transfer of one data object.

Thus the simple migration problem is equivalent to edge coloring.

—— Multigraph Edge Coloring ———

e Minimum number of colors for edge coloring is x’

Maximum degree of graph (A) is trivial lower bound on x/

Computing x’ is NP-Complete [Hoyer, 1981]

e Best known approximation algorithm for multigraphs is 9/8X'—|—
3/4 [Hochbaum et al, 1996]

—— Beyond Edge Coloring ——

e Indirect migration

— Allowed to send an object through intermediate or bypass
nodes
— This can decrease the number of time steps required

e Migration with memory constraints
— In any intermediate stage of the plan, all machines must

have a number of objects stored on them less than or
equal to the memory of that machine.

—— Indirect Migration —— —— Migration Results —

Given: Directed multigraph G with max degree A and n nodes.
Direct Migration (edge-coloring):

e Upperbound: 3[A/2] steps

[®—O0O
RN N e Lowerbound: 2[A/2] steps
[] [) [) [
Indirect Migration (edge-coloring):
e Upperbound: 2[A/2] steps with n/3 bypass nodes
e Lowerbound: A steps
8 . 10
What can we hope for? Graph Factoring ———
— p —— Grap g
Given: arbitrary directed multigraph G with max degree A and
n nodes.

e Clearly need > A steps for any migration
e In worst case, need n/3 bypass nodes to achieve A
e Key Idea: Graph Factoring
e Let G be a k-regular graph where k is an even number.
‘/l\ e We can factor G into k/2 2-regular graphs, G;, 1 <i<k/2
such that each edge in G occurs exactly once in some G,

VANIIPAN

n/3

Direct migrations

e need > x/ steps
e in worst case, x' = %A
11

—— Regular Graphs ———

e Key Idea: Can make any graph, G, with max degree A into
a graph G’ which is A’ = 2[A/2]-regular graph by adding
dummy edges to G

e Any migration for G’ gives a migration for G (just ignore the
dummy edges)

12

H /
— Making a graph A’-regular ———

The following algorithm takes a graph with degree A and adds
edges to it to get a graph of degree A’ =2[A/2]

Algorithm Regular

1. While there exists a vertex with degree less than A’ —1, add
a self loop to that vertex.

2. While there exist two distinct vertices of degree A’ — 1, add
an arbitrarily directed edge between them.

13

—— In-Class Excercise —

Make the following graph 4 regular as specified in Algorithm
Regular

"

O

Q: Intuitively, why does this algorithm work?

14

—— Factoring ——

e Now that we have a A’-regular graph, we can factor it into
a bunch of 2-regular graphs

e Once we have the 2-factors of the graph, the migration al-
gorithms are easy

e The challenging part is getting the 2-factors

15

—

—

Direct Migration - Results ——

3[A/2] steps maximum

Idea: Factor graph into set of 2-regular graphs

il =1Tv00

16

Indirect Migration - Results —

2[A /2] steps with n/3 bypass nodes.

Idea: Factor graph into set of 2-regular graphs. Use n/3 bypass
nodes for each “factor” to satisfy it in 2 steps.

Dl =1Tvd0

17

L Graph Factoring ——

Let G be a k-regular graph where k is an even number. We
factor GG as follows:

1. Construct an Euler-tour of G.

2. Orient the edges according to the direction of the tour. That
is, if the tour enters v on edge eq and leaves on edge ey, then
e1 IS an in-edge to v and ep is an out-edge. Thus we have
din = doyt = k.

3. Set up a bipartite matching problem, Bg, with a represen-
tative of each vertex in the graph on both sides. Add in all
directed edges going from left to right. Note that each edge
is represented in the matching problem exactly once.

4. Find a matching (which is guaranteed to exist by Hall's The-
orem). The matched edges induce a 2-factor of the original
graph. Remove these edges from Bg and repeat this step
until there are no edges left.

18

— Euler Toutr —7 —

An Euler Tour of a graph G is a tour which starts and ends at
the same vertex and traverses every edge exactly once.

It is well known that a graph G has an Euler Tour if and only if
each vertex of the graph has even degree.

19

Defn: A Matching —— Hall's Theorem ——

Let G = (L, R) be a bipartite graph. Then:
Let G be any graph with edge set E. Then a matching on G is e There is a perfect matching for G
a collection of edges E’ where E/ C E and no two edges in E’
share an endpoint. if and only if
Question: If G has n vertices, what are the maximum and mini- o VL' C L, [L'| < |N(L)|

mum possible sizes of a matching?

We will say a bipartite graph “has Hall's property” if it fulfills
this condition.

20 22

—— Defns —— —— Corollary —m—

For a bipartitie G = (L, R), if
A graph G is bipartite if it's vertex set V can be partitioned into
two sets L, R such that all edges in GG have one edge in L and
one edge in R.

e (G is k-regular,

Then
A matching is perfect if for every vertex [€ L, there is some

edge in the matching which is incident to I.

e VL' C L, |L'| <|N(L|.
Definition: Let G = (L, R). For any subset L’ of L, define N(L) . ,
to be the set of vertices which are neighbors of L. Proof: Consider any set L' C L, then

Question: If [IN(L)| < |L|, can there be a perfect matching? e Number of edges between L' and N(L') = k=« |L'| (since k
edges from each vertex in L)

e Number of edges between L' and N(L') < k= |N(L')| (since
k edges from each vertex in N(L'))
e Implies |L/| < |N(L')|

Hard Question: When does a bipartite graph have a perfect
matching?

21 23

Proof of Hall's Theorem ——

—

We will now prove Hall's Theorem:

Let G = (L, R) be a bipartite graph. Then
e There is a perfect matching for G

if and only if
o VL' C L, || < IN(L))|

where |X| is the number of vertices in the set X and N(X) is
the set of neighbors of the set X.

24

Proof of Hall's Theorem ——

—

Easy direction:

If
e there is a perfect matching for G,
then

e VL' C L, |L'| < IN(L")|

25

—— Easy Direction ————

if

e there is a perfect matching for G,
then

e VL' C L, |L'| <|N(L")]
Proof:
Assume there is a matching and that there is some set L’ such
that |L/| > |[N(L')|. We know that every vertex in L' must be
matched in the matching, hence we know that N(L’) contains

at least |L'| neighbors. This is a contradiction since we assumed
that |L/| > |[N(L')|.

26 .
Hard Direction — —
—
If
o VL' C L, |L'| < |N(L))]
then
e there is a perfect matching for G,
27

—

Proof of Hall'S ——

—

To show: If for some graph G = (L, R), VL' C L, |L'| < |N(L)]
then there is a perfect matching for G.

We will say that a graph is “slack” if it’s the case that VL' C L,
IL'| < |IN(LNH| -1

Proof:

We will prove this by strong induction on the number of vertices
in L.

Base case: If there is a single vertex the statement holds trivially.

28

Inductive Step ——

Inductive Step:

Case 1: The graph is slack.

Let | be some vertex in L, we know that [has some neighbor
in R, let » be one of those neighbors. Let G’ be the graph G
with the vertices I and r removed. Since G is slack, G’ satisfies
Hall's condition (any subset of vertices on the left side of G’ has
a number of neighbors at least as large as the set). Thus, by
the inductive hypothesis, there is a perfect matching for G'. If
we add to this matching the edge between [and r, we then have
a perfect matching for G.

29

Proof of Hall'S ——

—

Case 2: The graph is not slack.

In this case, there is some subset, L/, of L such that |L/| = |[N(L/)|
(and L' # L). Since |L'| < |L|, and Hall's condition holds for the
vertices in this set, we can use the inductive hypothesis to say
there is a perfect matching for the vertices of L’.

Now let X =L — L/, and let Y = R— N(L'). We will now show
that the condition for Hall's theorem holds for the graph (X,Y).
Consider any X’ C X. We will show that the set of neighbors of
X’ which are in Y is at least as large as the number of vertices
in X'

30

Proof of Hall'S ——

—

N(L")

O O O OO0O0O0 OO O 0O
O O O 0000 gl © 00

31

Inductive Hypothesis —— Proof of Hall's ——

I_ I_

We know that for any X’ which is a subset of X:
IX'UL| <|N(X'uL)|

For any bipartite graph H = (A, B) where |A| < |L],
and we know that:

if
o VA" C A, |A] < |N(A)] NX'UL) = NIL)u(NX)NY)
then . .
We also know by assumption (since the graph was not slack)
that:
e there is a perfect matching for H.
IL'| = |N(L)|
32, 34
Proof of Hall's ——— Proof of Hall's ——

For any X’ C X, the following holds:

X+ = |X'uL] (1)

< IN(X'UL) @)

— |IN(L)U(N(X)NY))| 3)

oY = IN(L) +|(N(X) N Y)| (4)
= ||+ |(N(X) N Y)| (5)

Cancelling |L'| from the first and last equation then gives that
| X' <|N(X')NY]. So Hall's condition holds for the graph (X,Y),
which means by the i.h. that there is a perfect matching of X
which uses only vertices in Y. Combining this with the per-
fect matching of L’ which uses vertices in N(L') gives a perfect
matching of all vertices in L.

33 35

—— Getting a Matching ———

e By Hall's theorem, we know that a perfect matching exists
for our bipartite graph

e QQ: How do we actually get this matching

e A: There is a polynomial time algorithm to do this.

36

—— Matching Algorithm

For a bipartite graph G with edge set FE:

Defn: A chain is a sequence of vertices and edges vy, e1,v2, €2, ..., €,
such that the edge e; = (v;_1,v;).

Let M be some (possibly non-maximum) matching on G.

Defn: A chain vy,eq,vp,e9p,...,¢,; is called M-alternating if the
edges ep,eq,... arein M.
Defn: A chain vi,e1,vp,ep,...,¢,v; IS called M-augmenting if it

is M-alternating and the vertices v; and v; are not incident to
any edges in M.

Theorem: A Matching M is maximum for G if and only if the
graph contains no M-augmenting chains.

37

— Algorithm Find-Matching ——

Input: A bipartite graph G = (L, R)
Algorithm Find-Matching:

1. Let M =¢
2. While there is still an unmatched vertex v in L do
(a) Search for an M-augmenting chain by doing a breadth
first search from v
(b) If a chain was found, let A = vq,e1,vp,€0,v3,€3...,€1_1,V]_1, €], V]
be that chain. Set the new matching M to be M U
{e1,e3,...,e;} —{eo,e4,...,e_1}

38 '
Exercise ———
—

In the graph below, let M = {el,e3}

Increase the size of M by finding an M-augmenting chain.

Give the M-augmenting chain and the new larger matching.
vi (el v4
ISy O

e4
v3 O 5 Q V6
39

—— Example ——

40

L Conclusion and Open Problems ——

Results:

e Approximation algorithm for NP-Hard migration problems
e For worst case inputs, results are near optimal!

Many open problems:

e Is chromatic index with space constraints > chromatic index
without?

e \What is tradeoff between number of bypass nodes available
and number of steps required?

e What can we say about migration on incomplete topologies?

41

