— Intro to Annihilators —

CS 362, Lecture 3

e Suppose we are given a sequence of numbers A = (ag,a1,a2, )
e This might be a sequence like the Fibonacci numbers
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ele A= <a0,a1,a2, . ) = (T(l),T(Q),T(?)),‘ ' >
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—— Today’'s Outling —— —— Annihilator Operators —

.y | . . ,
Listen and Understand! That terminator is out there. It can’t We define three basic operations we can perform on this se-

be bargained with, it can't be reasoned with! It doesn’t feel pity, quence:
remorse, or fear. And it absolutely will not stop, ever, until you
are dead!” - The Terminator
1. Multiply the sequence by a constant: cA = (caqg, cay,cap, -+ )
2. Shift the sequence to the left: LA = (a1,ap,a3, )

3. Add two sequences: if A = (ag,a1,ap, --)and B = (bg,b1,b2, "),

e Solving Recurrences using Annihilators
then A+ B = (ag + bg,a1 + b1,a0 + by, --)




Annihilator Description —m—uW Example (II) ——

I_ I_

Let's annihilate T = (20,21,22,23 .. .)

We first express our recurrence as a sequence T

We use these three operators to “annihilate” T, i.e. make it
2l 0's 2T = (2%20,2x 2,222 2523 ...) = (21 22 23 24 ...}

Multiplying by a constant ¢ = 2 gets:

Key rule: can't multiply by the constant O
We can then determine the solution to the recurrence from
the sequence of operations performed to annihilate T

Shifting one place to the left gets LT = (21,22 23 24 ...)
Adding the sequence LT and —27T gives:

LT — 2T = (21 — 21,22 22 23 _23 ...y =(0,0,0,---)
e The annihilator of T is thus L — 2

Example —— Distributive Property ————

I_ I_

e Consider the recurrence T(n) =2T(n—1), T(0) =1
e If we solve for the first few terms of this sequence, we can Thus can rewrite LT — 2T as (L — 2)T

0 51 52 53
see they are (27,27,27,2°,--) The operator (L — 2) annihilates T (makes it the sequence
e Thus this recurrence becomes the sequence: of all 0's)

Thus (L — 2) is called the annihilator of T

The distributive property holds for these three operators

T =(20,21,22 23 ...)




0, the "“Forbidden Annihilator” Example ——

I_ I_

If we apply operator (L — 3) to sequence T above, it fails to

- . . . annihilate T
Multiplication by 0 will annihilate any sequence

Thus we disallow multiplication by 0 as an operation (L-3)T = LT+ (-3)T
In particular, we disallow (c—c) = 0 for any c as an annihilator (21,2223 ..y 4 (-3 x 29, —3x 21, —3x22,...)
Must always have at least one L operator in any annihilator! (2-3)x2%,(2-3)x2! (2-3)x22,...)

Uniqueness — Example (II) ——

I_ I_

What does (L—c) do to other sequences A = (agd"™) when d # c?:

e An annihilator annihilates exactly one type of sequence
e In general, the annihilator L — ¢ annihilates any sequence of (L-c)A = (L —c){ag,aod, agd?, agd>,---)
the form <aoc") L<ao, apd, a0d2, a0d3, s > — C<ao, apd, aodz, a0d3, s >
e If we find the annihilator, we can find the type of sequence, = (aqd, aodz,a0d3, .-y — (cap, capd, ca0d2,caod3,-~->
and thus solve the recurrence {agd — cag, agd? — cagd, agd> — cagd?, )
e We will need to use the base case for the recurrence to solve = ((d— c)ag, (d — c)aod, (d — C)aodz’ )
for the constant ag

(d — ¢)(ag, apd, agd?, - - -)
= (d—0c)A




—— Uniqueness —— Example ——

First calculate the annihilator:

e The last example implies that an annihilator annihilates one e Recurrence: T(n) =4*xT(n—-1), T(0) =2
type of sequence, but does not annihilate other types of e Sequence: T = <2,2*4’2*42,2*43,...>
sequences e Calulate the annihilator:

e Thus Annihilators can help us classify sequences, and thereby — LT =(2%4,2x 42’ 2 x 43’ 2 x 44, )
solve recurrences — 4T = (2% 4,2%42 2x43 2% 4% ...)

— Thus LT — 4T = (0,0,0,---)
— And so L — 4 is the annihilator
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— Lookup Table —— — Example (II) ——

Now use the annihilator to solve the recurrence

Look up the annihilator in the “Lookup Table”

It says: “The annihilator L — 4 annihilates any sequence of
(c1a™) the form (c14m)”

Thus T'(n) = c14", but what is 17

We know T'(0) =2, so T(0) =¢34 =2 and so ¢; =2

Thus T(n) = 2% 4"

e The annihilator L — a annihilates any sequence of the form
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In Class Exercise Multiple Operators ——

I_ - I_

Consider the recurrence T(n) =3+«T(n—1), T(0) = 3, ) o )
e \We can string operators together to annihilate more compli-

cated sequences

e Q1: Calculate T(0),7(1),T(2) and T(3) and write out the e Consider: T = (20 430,21 4 31 22 4 32 ...)

sequence T ) . . e We know that (L—2) annihilates the powers of 2 while leaving
° 1(?2. Calculate LT, and use it to compute the annihilator o the powers of 3 essentially untouched

e Similarly, (L — 3) annihilates the powers of 3 while leaving
the powers of 2 essentially untouched

e Thus if we apply both operators, we'll see that (L—-2)(L—23)
annihilates the sequence T

e Q3: Look up this annihilator in the lookup table to get the
general solution of the recurrence for T'(n)

e Q4: Now use the base case T(0) = 3 to solve for the con-
stants in the general solution
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Multiple Operators —— The Details —

I_ I_

Consider: T = (a® 4+ 0, al +b1,a2 +b2,..-)

[ )
e We can apply multiple operators to a sequence o LT = (at +bt,a% +b2,a3+053,---)
e For example, we can multiply by the constant ¢ and then by e aT = (al +axb0,a? +axbta3+axb?...)
the constant d to get the operator cd o LT —aT = ((b—a)b?, (b—a)bl, (b—a)b?,--)
e We can also multiply by ¢ and then shift left to get cLT which e We know that (L —a)T annihilates the a terms and multiplies
is the same as L¢T the b terms by b —a (a constant)
e We can also shift the sequence twice to the left to get LLT e Thus (L —a)T = ((b—a)b?, (b—a)b, (b—a)b?,--)
which we'll write in shorthand as L27T e And so the sequence (L — a)T is annihilated by (L — b)

e Thus the annihilator of T is (L —b)(L — a)
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Key Point —— Fibonnaci Sequence ——

I_ I_

e We now know enough to solve the Fibonnaci sequence
e Recall the Fibonnaci recurrence is T(0) = 0, T(1) = 1, and
T(n)=Tn—-1)4+T(n—-2)
e In general, the annihilator (L — a)(L —b) (where a # b) will e Let T;, be the n-th element in the sequence
anihilate only all sequences of the form (cia™ 4 cob™) e Then we've got:
e We will often multiply out (L—a)(L—0b) to L2—(a+b)L +ab

T={T~T:.T>.Ta.--- 1

e Left as an exercise to show that (L —a)(L —b)T is the same (To, Ty, T2, T3, ) (1)
as (L2 — (a 4+ b)L + ab)T LT = (T1,T2,73, T4, - ) (2)
LT = (T2, T3, T4, Ts, - --) (3)

e Thus L2T — LT —T = (0,0,0,---)
e In other words, L2 — L — 1 is an annihilator for T
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Lookup Table ——— Factoring ———

I_ I_
e L2 — L — 1 is an annihilator that is not in our lookup table
e The annihilator L—a annihilates sequences of the form (c;a™) e However, we can factor this annihilator (using the quadratic
e The annihilator (L — a)(L — b) (where a # b) anihilates se- formula) to get something similar to what's in the lookup
quences of the form (c1a™ 4 cob™) table

e L2-L-1=(L—-¢)(L-29), whereqb:%@and cg:l}j-
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—— Quadratic Formula —

“Me fail English? That’s Unpossible!” - Ralph, the Simpsons

High School Algebra Review:

e To factor something of the form az? + bz + ¢, we use the

Quadratic Formula:

e az? 4 bz + ¢ factors into (z — ¢)(z — @), where:

—

—b+/b% — 4ac
¢ = 5 (4)
a
- —b— /b2 — 4ac
¢ = > (5)
a
24
Example ———
To factor: L2 —L -1
Rewrite: 1%L2—1xL—-1,a=1,b=-1,c=-1
From Quadratic Formula: ¢ = %\/g and ¢ = 1—2\/5
So L2 — L — 1 factors to (L — ¢)(L — @)
25
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—

Back to FibonnaCi —

Recall the Fibonnaci recurrence is T(0) =0, T(1) =1, and
T(n)=Tn—-1)4+T(n—-2)

We've shown the annihilator for T is (L — ¢)(L — ¢), where
¢ =1/5 and g =15/°

If we look this up in the “Lookup Table”, we see that the
sequence T must be of the form (c1¢™ + cod™)

All we have left to do is solve for the constants ¢; and ¢
Can use the base cases to solve for these
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Finding the Constants —

We know T = (c1¢™ + c2¢™), where ¢ = 14v5 gpg ¢ = 155
We know

T(0) = c1+c2=0 (6)
T(1) = c1o+ecbp=1 (7)
We've got two equations and two unknowns
Can solve to get ¢; = % and c¢p = —%,
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— The Punchling —— — Example ——

e Recall Fibonnaci recurrence: T(0) =0, T(1) =1, and T(n) =
T(n—1)4+T(n—2)

_ ny  _— n+1l n
e The final explicit formula for T'(n) is thus: (L —a)(na®) = ((n+1)a 41 (a)Tl)
AN L1 vE\T = {(n4+1)a""" —na"T")
T(n) = ( ) _< - ) = ((n4+1-n)a"t1)
\/5 2 \/E 2 — <an+1>
132 ny _ n+1
(Amazingly, T'(n) is always an integer, in spite of all of the square (L = a)%(na™) B (L —a)a )
roots in its formula.) = (0)
28 . 30
—— A Problem ——— —— Generalization ——

e It turns out that (L — @)% annihilates sequences of the form

e Our lookup table has a big gap: What does (L —a)(L —a) (p(n)a™) where p(n) is any polynomial of degree d — 1
annihilate? e Example: (L — 1)3 annihilates the sequence (n? x 17) =
e It turns out it annihilates sequences such as (na™) (1,4,9,16,25) since p(n) = n? is a polynomial of degree
d—1=2
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Lookup Table —— ExampleS ——

I_ I_
e (L —a) annihilates only all sequences of the form (cga™) e Q: What does (L —3)(L —2)(L — 1) annihilate?
e (L—a)(L-b) annihilates only all sequences of the form (cga™+ o A cgl™ + 12" + 3"
c1b™) e Q: What does (L —3)2(L —2)(L — 1) annihilate?
e (L—ag)(L—a1)...(L—ag) annihilates only sequences of the e A: cgl™+ 12" + (con + ¢3)3"
form (cpag + ciaf +...cia}l), here a; # aj, when i % j e Q: What does (L — 1)# annihilate?
e (L —a)? annihilates only sequences of the form ((con+c1)a™) e A: (con3 4+ c1n? + con +c3)1™
e (L — a)F annihilates only sequences of the form (p(n)a™), e Q: What does (L — 1)3(L — 2)2 annihilate?
degree(p(n)) =k —1 o A: (con? 4 cin+ c2)1™ + (ezn + ca)2"
32, 34
Lookup Table — Annihilator Method —_
I_ P I_

Write down the annihilator for the recurrence

Factor the annihilator

annihilates only sequences of the form: Look up the factored annihilator in the “Lookup Table’ to
get general solution

7 T4 n)al
(p1(n)ag +pa(n)af + ... pr(n)ag) Solve for constants of the general solution by using initial
where p;(n) is a polynomial of degree b; — 1 (and a; # a;, when conditions

i # )

(L —ag)®(L —ag)br... (L —ag)%
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Todo

e HW 1
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