Matrix Chain Multiplication ——

—
Problem:
e We are given a sequence of n matrices, A1, Ao, ..., An, Where
CS 362, Lecture 7 for i = 1,2,...,n, matrix A; has dimension p,_1 by p;
e We want to compute the product, A1Ao, ..., Ay as quickly as
Jared Saia possible.
University of New Mexico e In particular, we want to fully paranthesize the expression

above so there are no ambiguities about the how the matrices
are multiplied

e A product of matrices is fully parenthisized if it is either a
single matrix, or the product of two fully parenthesized matrix
products, sorrounded by parantheses

Today's Outline —— Paranthesizing Matrices ——

I_ I_

e There are many ways to paranthesize the matrices
e Each way gives the same output (because of associativity of
e Matrix Multiplication matrix multiplications)
e However the way we paranthesize will effect the time to com-
pute the output
e Our Goal: Find a paranthesization which requires the mini-
mal number of scalar multiplications




— Example —— — A Problem —
I I
L] \

e Let P(n) be the number of ways to paranthesize n matrices.
Then P(1) =1

e For n > 2, we know that a fully paranthesized product is the
product of two fully paranthesized products, and the split
can occur anywhere from k=1to k=n— 1.

e Hence for n > 2:

e In this example, it's much better to multiply the last two
matrices first (this gives us a short, narrow matrix on the
right)

e Worse to multiply the first two matrices first (this gives us a
short wide matrix on the left)

n—1
P(n) = Z P(k)P(n —k)
k=1

e In the hw, you will show that the solution to this recurrence

) i is Q(2")
e In general, our goal is to find ways to always create narrow
and short resulting matrices.
4 . 6
A Problem ——— The Pattern ———
I_ I_

Q: Can we develop a DP Solution to this problem?
Problem: There can be many ways to paranthesize. E.g.
e Formulate the problem recursively.. Write down a formula

e (A1(Ax(A3A4))) for the whole problem as a simple combination of answers to
e (A1((AsA3)AR)) smaller subproblems

e ((A14A5)(A34A4)) e Build solutions to your recurrence from the bottom up.
e ((A1(AxA3))AL) Write an algorithm that starts with the base cases of your
e (((A1A5)A3)AL) recurrence and works its way up to the final solution by con-

sidering the intermediate subproblems in the correct order.




L Key Observation — L Cost to Multiply —m —

Let A; ; (fori < j) be the matrix that results from evaluating
the product A;A;41,... A

Imagine we are computing A; ;

e The last multiplication we do must look like this:

A= (A ) * (Agg1.5)

for some k between ¢ and j — 1

Azk isap,_1 by Pk matrix

Ag41.j 1s @ pg by p; matrix

Thus multiplying A; p and A1 ; takes p;_1pgp; operations
Hence we have:

e Then total cost to compute 4; ; is: m(i,j) < m(i,k) +
m(k+1,5) +
cost to compute A; . + DPi—1PkPj

cost to compute Apyq.; +
cost to multiply A; , and Ag4q

—— Recursive Formulation ——— —— Recursive Formulation ——

e For any integers z,y, let m(z,y) be the minimum cost of
computing Az .y

e Then for any k between ¢ and j — 1,
m(i,j) < optimal cost to compute A; ; +

e We've shown that m(i,j) < m(i, k) +m(k + 1,5) + pi—1pip;
forany k=4,i+1,...,7—1
e Further note that the optimal parenthesization must use

optimal cost to compute Ajyq ; + some value of k =14,i+1,...,5—1. So we need only pick the
cost to multiply A; , and Ag4q best
e In other words: e Thus we have:
m(i,j) < m(i,k) + m(i,j) =0ifi=j
mk+1,5) + m(i,5) = Minicp; {m, k) +m(k + 1,5) + pi_19kp;}

cost to multiply A; , and Ag4q

9 11




The Recursive Algorithm —— Pseudocode ——

I_ I_

Matrix-Chain-Order(int p[]1){
n = p.length - 1;
for (i=1;i<=n;i++){

m(i,i) = O;
e We now have enough information to write a recursive func- }
tion to solve the problem for (1=2;1<=n;1++){ \\1 is chain length
e The recursive solution will have runtime given by the follow- for (i=1;i<=n-1+1;i++){
ing recurrence: j = i+l-1;
e T(1) =1, m[i,j] = MAXINT;
o T(n) =1+ 72 1(T(k) +T(n—k)+1) for (k=i;k<=j-1;k++){
e Unfortunately, the solution to this recurrence is Q(2™) (as q = m[i,k] + m[k+1,j] + pli-11*plk]l*p[j];
shown on p. 346 of the text) if(q<m[i, j1){
ml[i,j]l = q;
s[i,j] = k;
}
31}
12 14
—— DP Algorithm —— —— Psuedocode —

e Note that we must solve one subproblem for each choice of
1 and j satisfying 1 <i<j<n

e This is only (g) + n = &(n?) subproblems

e The recursive algorithm encounters each subproblem many
times in the branches of the recursion tree.

e However, we can just compute these subproblems from the
bottom up, storing the results in a table (this is the DP
solution)

e This code computes both the optimal cost and a parenthe-
sization that achieves that cost

e It uses an m array to store the optimal costs of computing
m(i,7). It also uses a s array, where s(i,5) stores the k value
which gives m(,j)

e The parenthesization can be recovered from the s array using
the pseudocode in the book on p. 338.

13 15




—— Analysis ——

e This code has three nested loops, each of which takes on at
most n — 1 values, and the inner loop takes O(1) time.

e Thus the runtime is O(n3)

e The algorithm also requires ©(n?) space

16

—— Example ——

e Consider the sequence of three matrices, Ay, Ay, A3 whose
dimensions are given by the sequence 3,1,2,1 (i.e. pg = 3,
p1=1p>=2, p3=1)

e Let's construct the tables giving the optimal parenthesization

e The (4,7) entry of the first table will give the optimal cost
for computing A4; ;, the (4,5) entry of the second table will
give a k value which achieves this optimal cost

17

—

Computations ——

e m(1,1) =m(2,2) =m(3,3) =0

o m(1,2) = popip2 =6
o m(2,3) = pipop3 =2

—

m(1,3) = min

18

Computations ——

m(la 1) + m(2a 3) +p0plp3)a
m(1,2) +m(3,3) + pop2p3)
0+2+3,
6+0+46

}

19




— Example, m array —— — Example ——

1 2 3
1/0 6 5 e Thus an optimal parenthesization is (A1(A2A43))
2)- 02 e The cost of thisis 5
3/]- -0
20 ' 22
Example, s array —— Example II —
— ple, y — p
e Consider the sequence of three matrices, A1, Ay, Az, A4 whose
i 5 3 dimensions are given by the sequence 3,1,2,1,2 (i.e. pg = 3,
17- 1 1 p1=1,p2=2,p3=1,ps=2)
20- - 9 e Let's construct the tables giving the optimal parenthesization
3/- - - e The (4,7) entry of the first table will give the optimal cost

for computing 4; ;, the (i,5) entry of the second table will
give a k value which achieves this optimal cost

21 23




Example II, m array Example Computation

m(1,1) +m(2,4) 4+ pop1pa),
1 23 4 m(1,4) = min{ m(1,2) 4 m(3,4) + popava),
1106510 m(1,3) +m(4,4) + popapa)
21- 0 2 4 0+4+6,
3|- - 0 4 = min{ 6 +4+ 12,
4]- - -0 5+0+6
= 10

This minimum is achieved when k=1

24 26

Example II, s array Example II ——

I_ I_
1 2 3 4
1/- 1 1 1
ol - 92 3 e Thus an optimal parenthesization is (A1((A>A43)A4))
3/- - - 3 e The cost of this is 10
4| - - - =

25 27




—— In-Class Exercise ——

e Consider the sequence of three matrices, Ay, Ay, A3 whose
dimensions are given by the sequence 1,2,1,2 (i.e. pg = 1,
p1 =2, p2p=1, p3 =2)

e Q1: What are the m array and s array for these inputs?

e Q2: What is the optimal parenthesization?

28




