
CS 362, Lecture 7

Jared Saia

University of New Mexico

Today’s Outline

• Matrix Multiplication

1

Matrix Chain Multiplication

Problem:

• We are given a sequence of n matrices, A1, A2, . . . , An, where

for i = 1,2, . . . , n, matrix Ai has dimension pi−1 by pi

• We want to compute the product, A1A2, . . . , An as quickly as

possible.

• In particular, we want to fully paranthesize the expression

above so there are no ambiguities about the how the matrices

are multiplied

• A product of matrices is fully parenthisized if it is either a

single matrix, or the product of two fully parenthesized matrix

products, sorrounded by parantheses

2

Paranthesizing Matrices

• There are many ways to paranthesize the matrices

• Each way gives the same output (because of associativity of

matrix multiplications)

• However the way we paranthesize will effect the time to com-

pute the output

• Our Goal: Find a paranthesization which requires the mini-

mal number of scalar multiplications

3



Example

• In this example, it’s much better to multiply the last two

matrices first (this gives us a short, narrow matrix on the

right)

• Worse to multiply the first two matrices first (this gives us a

short wide matrix on the left)

• In general, our goal is to find ways to always create narrow

and short resulting matrices.

4

A Problem

Problem: There can be many ways to paranthesize. E.g.

• (A1(A2(A3A4)))

• (A1((A2A3)A4))

• ((A1A2)(A3A4))

• ((A1(A2A3))A4)

• (((A1A2)A3)A4)

5

A Problem

• Let P (n) be the number of ways to paranthesize n matrices.

Then P (1) = 1

• For n ≥ 2, we know that a fully paranthesized product is the

product of two fully paranthesized products, and the split

can occur anywhere from k = 1 to k = n − 1.

• Hence for n ≥ 2:

P (n) =
n−1
∑

k=1

P (k)P (n − k)

• In the hw, you will show that the solution to this recurrence

is Ω(2n)

6

The Pattern

Q: Can we develop a DP Solution to this problem?

• Formulate the problem recursively.. Write down a formula

for the whole problem as a simple combination of answers to

smaller subproblems

• Build solutions to your recurrence from the bottom up.

Write an algorithm that starts with the base cases of your

recurrence and works its way up to the final solution by con-

sidering the intermediate subproblems in the correct order.

7



Key Observation

• Let Ai..j (for i ≤ j) be the matrix that results from evaluating

the product AiAi+1, . . . Aj

• Imagine we are computing Ai..j

• The last multiplication we do must look like this:

Ai..j = (Ai..k) ∗ (Ak+1..j)

for some k between i and j − 1

• Then total cost to compute Ai..j is:

cost to compute Ai..k +
cost to compute Ak+1..j +

cost to multiply Ai..k and Ak+1..j

8

Recursive Formulation

• For any integers x, y, let m(x, y) be the minimum cost of

computing Ax..y

• Then for any k between i and j − 1,
m(i, j) ≤ optimal cost to compute Ai..k +

optimal cost to compute Ak+1..j +

cost to multiply Ai..k and Ak+1..j

• In other words:

m(i, j) ≤ m(i, k) +
m(k + 1, j) +
cost to multiply Ai..k and Ak+1..j

9

Cost to Multiply

• Ai..k is a pi−1 by pk matrix

• Ak+1..j is a pk by pj matrix

• Thus multiplying Ai..k and Ak+1..j takes pi−1pkpj operations

• Hence we have:

m(i, j) ≤ m(i, k) +
m(k + 1, j) +
pi−1pkpj

10

Recursive Formulation

• We’ve shown that m(i, j) ≤ m(i, k) + m(k + 1, j) + pi−1pkpj

for any k = i, i + 1, . . . , j − 1

• Further note that the optimal parenthesization must use

some value of k = i, i+1, . . . , j −1. So we need only pick the

best

• Thus we have:

m(i, j) = 0 if i = j

m(i, j) = mini≤k<j{m(i, k) + m(k + 1, j) + pi−1pkpj}

11



The Recursive Algorithm

• We now have enough information to write a recursive func-

tion to solve the problem

• The recursive solution will have runtime given by the follow-

ing recurrence:

• T (1) = 1,

• T (n) = 1 +
∑n−1

k=1(T (k) + T (n − k) + 1)

• Unfortunately, the solution to this recurrence is Ω(2n) (as

shown on p. 346 of the text)

12

DP Algorithm

• Note that we must solve one subproblem for each choice of

i and j satisfying 1 ≤ i ≤ j ≤ n

• This is only
(

n
2

)

+ n = Θ(n2) subproblems

• The recursive algorithm encounters each subproblem many

times in the branches of the recursion tree.

• However, we can just compute these subproblems from the

bottom up, storing the results in a table (this is the DP

solution)

13

Pseudocode

Matrix-Chain-Order(int p[]){

n = p.length - 1;

for (i=1;i<=n;i++){

m(i,i) = 0;

}

for (l=2;l<=n;l++){ \\l is chain length

for (i=1;i<=n-l+1;i++){

j = i+l-1;

m[i,j] = MAXINT;

for(k=i;k<=j-1;k++){

q = m[i,k] + m[k+1,j] + p[i-1]*p[k]*p[j];

if(q<m[i,j]){

m[i,j] = q;

s[i,j] = k;

}

}}}}

14

Psuedocode

• This code computes both the optimal cost and a parenthe-

sization that achieves that cost

• It uses an m array to store the optimal costs of computing

m(i, j). It also uses a s array, where s(i, j) stores the k value

which gives m(i, j)

• The parenthesization can be recovered from the s array using

the pseudocode in the book on p. 338.

15



Analysis

• This code has three nested loops, each of which takes on at

most n − 1 values, and the inner loop takes O(1) time.

• Thus the runtime is O(n3)

• The algorithm also requires Θ(n2) space

16

Example

• Consider the sequence of three matrices, A1, A2, A3 whose

dimensions are given by the sequence 3,1,2,1 (i.e. p0 = 3,

p1 = 1, p2 = 2, p3 = 1)

• Let’s construct the tables giving the optimal parenthesization

• The (i, j) entry of the first table will give the optimal cost

for computing Ai..j, the (i, j) entry of the second table will

give a k value which achieves this optimal cost

17

Computations

• m(1,1) = m(2,2) = m(3,3) = 0

• m(1,2) = p0p1p2 = 6

• m(2,3) = p1p2p3 = 2

18

Computations

m(1,3) = min

{

m(1,1) + m(2,3) + p0p1p3),
m(1,2) + m(3,3) + p0p2p3)

}

= min

{

0 + 2 + 3,

6 + 0 + 6

}

= 5

19



Example, m array

1 2 3

1 0 6 5
2 - 0 2
3 - - 0

20

Example, s array

1 2 3

1 - 1 1
2 - - 2
3 - - -

21

Example

• Thus an optimal parenthesization is (A1(A2A3))

• The cost of this is 5

22

Example II

• Consider the sequence of three matrices, A1, A2, A3, A4 whose

dimensions are given by the sequence 3,1,2,1,2 (i.e. p0 = 3,

p1 = 1, p2 = 2, p3 = 1, p4 = 2)

• Let’s construct the tables giving the optimal parenthesization

• The (i, j) entry of the first table will give the optimal cost

for computing Ai..j, the (i, j) entry of the second table will

give a k value which achieves this optimal cost

23



Example II, m array

1 2 3 4

1 0 6 5 10
2 - 0 2 4
3 - - 0 4
4 - - - 0

24

Example II, s array

1 2 3 4

1 - 1 1 1
2 - - 2 3
3 - - - 3
4 - - - -

25

Example Computation

m(1,4) = min











m(1,1) + m(2,4) + p0p1p4),
m(1,2) + m(3,4) + p0p2p4),
m(1,3) + m(4,4) + p0p3p4)











= min











0 + 4 + 6,

6 + 4 + 12,

5 + 0 + 6











= 10

This minimum is achieved when k = 1

26

Example II

• Thus an optimal parenthesization is (A1((A2A3)A4))

• The cost of this is 10

27



In-Class Exercise

• Consider the sequence of three matrices, A1, A2, A3 whose

dimensions are given by the sequence 1,2,1,2 (i.e. p0 = 1,

p1 = 2, p2 = 1, p3 = 2)

• Q1: What are the m array and s array for these inputs?

• Q2: What is the optimal parenthesization?

28


