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1. Short Answer

Multiple Choice:

The following choices will be used for the multiple choice problems.
(a
(b

(c

(d
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For each of the questions below, choose one of the above possible answers. Please write the
letter of your chosen answer to the left of the question.

(a) 898" Solution: ©(n?)

(b) Amount of space required by the dynamic programming algorithm for finding the optimal
parenthesization of a sequence of n matrices Solution: ©(n?)

(c) Worst case cost of n calls to Pop, Push and Multipop on a stack Solution: ©(n)
(d) Solution to the recurrence T'(n) = 4T (n/2) + logn Solution: ©(n?)
(e) Solution to the recurrent T'(n) = 27'(n/4) + n Solution: ©(n)

True or False: Justify your answer briefly (10 points total). Circle your final answers.
(a) If an operation takes O(1) amortized time, then it takes O(1) worst case time. Solution:
False
(b) Greedy algorithms do not always find the correct solutions Solution: True
(c) logn is o(y/n) Solution: True
(d) logn? is Q(3logn) Solution: True
)

(e) A dynamic programming algorithm is typically faster than a greedy algorithm Solution:
False



2. Substitution Method
Consider the following recurrence: 7'(1) = 1, T(2) = 2 and

T(n) = T([n/2]) * T(In/2])

n

Show that T'(n) < n by induction. Include the following in your proof: 1)the base case(s)
2)the inductive hypothesis and 3)the inductive step.

Solution: Base Case: T(1) =1 and T(2) = 2 which are both in fact no more than n.
Inductive Hypothesis: For all j <n, T(j) <j
Inductive Step: We must show that T'(n) < n, assuming the inductive hypothesis.

Ty — TUn/2D)<T(n/2) "

< (2Dl o)
< 020 5
< n/d (@

where the inductive hypothesis allows us to make the replacements in the second step.



3. Annihilators

Consider the following function:

int

f (int n){

if (n==0) return O;
else if (n==1) return 1;
elseq{

val = 2*%f (n-1) - f(n-2);
val += 1;
return val;

Let f(n) be the value returned by the function f when given input n. Write a recurrence
relation for f(n)

Solution: f(n) =2f(n—1)— f(n—2)+1

Now give the general form for the solution for f(n) using annihilators. You need not
solve for the constants. Solution: First we annihilate the homogeneous part, f(n) =
2f(n—1) — f(n—2). Let F,, = f(n), and F = (F,). Then

Fo= (F) (5)
LF = (Fup) (6)
L’F = (Fuia) (7)

Since (Fpyo) = (2F, 11— F,), we know that L*F —2LF+F = (0), and thus L* —2L+1 =
(L —1)? annihilates F.

Now we must annihilate the nonhomogeneous part f(n) = 1. It’s not hard to see that
L — 1 annihilates this nonhomogeneous part. So the annihilator for the entire function
f(n)=2f(n—1)— f(n—2)+1 is (L —1)3. Looking this up in the lookup table, we see
that f(n) is of the form:

fn) = can®*+contcs (8)



4. Dynamic Programming

Consider a new variant of the string alignment problem where 1) the cost of an alignment is
defined to be the number of columns which contain two characters which are the same and 2)
we want to find an alignment of maximal cost. For example in this new variant, the align-
ment below would have cose 2 and would be an optimal alignment since it mazimizes the cost.
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The recurrence relation for the optimal cost of aligning two strings A and B in the
original variant of the string alignment problem is given in the formula below. E(i, )
is the value of aligning A[0..i] and BJ0..j]. Give the modifications needed to get a
recurrence relation for the optimal cost in the new variant of the problem. To do this,
you will need to make seven small changes to the formula below. Please cross out the
values (or words) to change and write the new values next to the crossed out ones.

E(0,j) = j for all j,

E(i,0) = iforalli
E(i—1,5)+1,
E(i,j—1)+1,

Bi.j) = mind Z0I7D

_— 0 if Afi] = Blj]
E(i—1,j U+{1ﬁAM#BM}

Now use this new recurrence to find the maximal alignment cost under this new variant
for the two strings ba and cb. Do this by filling in the nine entries in the following
dynamic programming table. Also include the arrows used to reconstruct a minimal
solution. To the right of the table, give an alignment which achieves the maximal cost.

b

Solution:

E(i,0 for all i
fit

B(i,j) = maxq 700 if Al = Blj
B+ { AEA =B
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5. Amortized Analysis

Consider a stack of ints that has the following operations defined on it:

e Push(z): Pushes the int x onto the stack

e AddUp(): Removes all ints from the stack, adds them up and then pushes the sum back
on the stack.

Assume these operations have the following costs:

e Push(z) - cost equals 1
e AddUp() - cost equals the number of ints on the stack plus one

(a) Assume we perform n operations on the stack. What is the worst case run time of a call
to AddUp? Justify your answer.

Solution: Worst case is O(n) which happens when we call Push() n — 1 times and then
call AddUp()

(b) Accounting Method. Now you will show that the amortized cost of these two operations
is small using the taxation (accounting) method.

i. First give the amount that you will charge Push() and the amount that you will
charge AddUp().

ii. Next show how you will use these charges to pay for the actual costs of these oper-
ations.

iii. Finally write down the amortized cost per operation.

Solution: Push gets charged 2 dollars. AddUp gets charged 1 dollar. When we do a push,
we use one dollar to pay for the push and store the other dollar with the item. When we
do an AddUp, we use the dollars stored with all the items on the stack plus the dollar
we charged for the AddUp() to pay the toal cost. This shows that the amortized cost per
operation is O(1)



(¢) Potential Method. You will next use the potential method to get the amortized cost per
operation. Let S; be the stack after the i-th operation and let num(S;) be the number
of ints on .5;. You will use the following potential function:

¢; = num(S;)

i. First show that this potential function is valid (i.e. ¢9 = 0 and ¢; > 0 for all 7)

ii. Next use this potential function to calculate the amortized costs of Push and AddUp
(Recall that a; = ¢; + ¢; — ¢;—1 where qa; is the amortized cost of the i-th operation
and ¢; is the actual cost)

Solution: The number of items on the stack is initally O and is always nonnegative so ¢
is valid. First we calculate the amortized cost of Push() at time i. Note that ¢; = 1 and
¢i — ¢i—1 = 1. Thus a; = 2. Next we calculate the amortized cost of AddUp(). Note that
¢ = num(S;—1) + 1. Further note that ¢; — ¢;—1 = 1 — num(S;—1). Thus a; = 2. This
implies that the amortized cost of both operations is O(1).



