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L Today's Outline ——

e Reduction Wrapup
e Approximation algorithms for NP-Hard Problems

—— Hamiltonian Cycle —

e A Hamiltonian Cycle in a graph is a cycle that visits every
vertex exactly once (note that this is very different from an
Eulerian cycle which visits every edge exactly once)

e The Hamiltonian Cycle problem is to determine if a given
graph G has a Hamiltonian Cycle

e We will show that this problem is NP-Hard by a reduction
from the vertex cover problem.

—— The Reduction ——

e To do the reduction, we need to show that we can solve
Vertex Cover in polynomial time if we have a polynomial
time solution to Hamiltonian Cycle.

e Given a graph G and an integer k, we will create another
graph G’ such that G’ has a Hamiltonian cycle iff G has a
vertex cover of size k

e As for the last reduction, our transformation will consist of
putting together several ‘“‘gadgets”




L Edge Gadget and Cover Vertices — L Cover Vertices —

e For each edge (u,v) in G, we have an edge gadget in G’
consisting of twelve vertices and fourteen edges, as shown
below

uv,) uv2 uv,3 uvd) (uv5 (uv6)

m ) - e G’ also contains k cover vertices, simply numbered 1 through

vul) vu2) (vu3) wud) (vub) (Wu,b)

An edge gadget for (u,v) and the only possible Hamiltonian paths

through it.
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Edge Gadget — Vertex Chains ——
— =99 g —

e For each vertex u in GG, we string together all the edge gad-
. gets for edges (u,v) into a single vertex chain and then con-

¢ Th(;f;)ur cornerdvertllces-(u,;ll), (g’v’f)' (v,u,1), and (v, u, 6) nect the ends of the chain to all the cover vertices
eac a.ve a.n edge leaving the gadge e Specifically, suppose u has d neighbors vy, vo,...,v4. Then G’

e A Hamiltonian cycle can only pass through an edge gadget

has the following edges:

— d — 1 edges between (u,v;,6) and (u,v;41,1) (for all i
between 1 and d — 1)

— k edges between the cover vertices and (u,v1,1)

— k edges between the cover vertices and (u, vy, 6)

in one of the three ways shown in the figure
e These paths through the edge gadget will correspond to one
or both of the vertices v and v being in the vertex cover.




The Reduction —— Example ——

I_ I_

e It's not hard to prove that if {vy,vo,...,v;} iS @ vertex cover J
of G, then G’ has a Hamiltonian cycle ‘/' =

e To get this Hamiltonian cycle, we start at cover vertex 1, ‘
traverse through the vertex chain for vy, then visit cover O—@
vertex 2, then traverse the vertex chain for v and so forth, n

. W—

until we eventually return to cover vertex 1

e Conversely, one can prove that any Hamiltonian cycle in G’
alternates between cover vertices and vertex chains, and that
the vertex chains correspond to the k vertices in a vertex /
cover of G T

( \\\;: — —)
Thus, G has a vertex cover of size k iff G’ has a Hamiltonian The original graph G with vertex cover {v,w}, and the transformed graph G’
cycle with a corresponding Hamiltonian.cycle (bold gdges). .
Vertex chains are colored to match their corresponding vertices.
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—— The Reduction — —— The Reduction —

e The transformation from G to G’ takes at most O(|V|?) time, o(V[»)
so the Hamiltonian cycle problem is NP-Hard v ‘graph G =V 5, k‘—>

e Moreover we can easily verify a Hamiltonian cycle in linear Hamiltonian Cycle
time, thus Hamiltonian cycle is also in NP ‘True or False‘g‘True or False‘

e Thus Hamiltonian Cycle is NP-Complete
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—— Traveling Sales Person ——— —— Challenge Problem ——

e Consider the optimization version of, say, the graph coloring
problem: “Given a graph G, what is the smallest number
of colors needed to color the graph?” (Note that unlike the
decision version of this problem, this is not a yes/no question)

e Show that the optimization version of graph coloring is also
NP-Hard by a reduction from the decision version of graph
coloring.

e Is the optimization version of graph coloring also NP-Complete?

e A problem closely related to Hamiltonian cycle is the famous
Traveling Salesperson Problem(TSP)

e The TSP problem is: “Given a weighted graph G, find the
shortest cycle that visits every vertex.

e Finding the shortest cycle is obviously harder than deter-
mining if a cycle exists at all, so since Hamiltonian Cycle is
NP-hard, TSP is also NP-hard!

12 . 14 .
NP-Hard Games —— Challenge Problem ——
I_ I_ 9

e Consider the problem 4Sat which is: “Is there any assign-
e In 1999, Richard Kaye proved that the solitaire game Minesweeper ment of variables to a 4CNF formula that makes the formula

is NP-Hard, using a reduction from Circuit Satifiability. evaluate to true?”
e Also in the last few years, Eric Demaine, et. al., proved that e Is this problem NP-Hard? If so, give a reduction from 3Sat
the game Tetris is NP-Hard that shows this. If not, give a polynomial time algorithm

which solves it.
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Challenge Problem ——

Consider the following problem: “Does there exist a clique
of size 5 in some input graph G7"

Is this problem NP-Hard? If so, prove it by giving a reduction
from some known NP-Hard problem. If not, give a polynomial
time algorithm which solves it.

16

—

Vertex Cover ——

—

A vertex cover of a graph is a set of vertices that touches
every edge in the graph

The decision version of Vertex Cover is: “Does there exist
a vertex cover of size k in a graph G?".

We've proven this problem is NP-Hard by an easy reduction
from Independent Set

The optimization version of Vertex Cover is: “What is the
minimum size vertex cover of a graph G7"

We can prove this problem is NP-Hard by a reduction from
the decision version of Vertex Cover (left as an exercise).
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—

Approximating Vertex Cover ———

e Even though the optimization version of Vertex Cover is NP-

Hard, it's possible to approximate the answer efficiently

e In particular, in polynomial time, we can find a vertex cover

which is no more than 2 times as large as the minimal vertex
cover
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Approximation Algorithm ——

e The approximation algorithm does the following until G has

no more edges:

e It chooses an arbitrary edge (u,v) in G and includes both

and v in the cover

e It then removes from G all edges which are incident to either

u or v
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—

Approximation Algorithm ——

Approx-Vertex-Cover (G) {

C

= {};

E’ = Edges of G;
while(E’ is not empty){

}

let (u,v) be an arbitrary edge in E’;
add both u and v to C;

remove from E’ every edge incident to u or v;

return C;

—
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—

Analysis ——

If we implement the graph with adjacency lists, each edge
need be touched at most once

Hence the run time of the algorithm will be O(|V| 4+ |E|),
which is polynomial time

First, note that this algorithm does in fact return a vertex
cover since it ensures that every edge in GG is incident to some
vertex in C

Q: Is the vertex cover actually no more than twice the optimal
size?

21

Analysis ——

Let A be the set of edges which are chosen in the first line
of the while loop

Note that no two edges of A share an endpoint

Thus, any vertex cover must contain at least one endpoint
of each edge in A

Thus if Cx is an optimal cover then we can say that |Cx| > |A|
Further, we know that |C| = 2|A]|

This implies that |C] < 2|C x|

Which means that the vertex cover found by the algorithm is no
more than twice the size of an optimal vertex cover.
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TSP ——

e An optimization version of the TSP problem is: “Given a

weighted graph G, what is the shortest Hamiltonian Cycle of
G?H

e This problem is NP-Hard by a reduction from Hamiltonian

Cycle

e However, there is a 2-approximation algorithm for this prob-

lem if the edge weights obey the triangle inequality
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Triangle Inequality ——— Approximation Algorithm ——

I_ I_

e In many practical problems, it's reasonable to make the as-
sumption that the weights, ¢, of the edges obey the triangle
inequality Approx-TSP(G) {
e The triangle inequality says that for all vertices u,v,w € V: T = MST(G);
L = the list of vertices visited in a depth first traversal

c(u,w) < e(u,v) + (v, w) of T, starting at some arbitrary node in T;

e In other words, the cheapest way to get from u to w is always H = the Hamiltonian Cycle that visits the vertices in the
to just take the edge (u,w) order L;

e In the real world, this is usually a pretty natural assumption. return H;
For example it holds if the vertices are points in a plane }

and the cost of traveling between two vertices is just the
euclidean distance between them.
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Approximation Algorithm —— Example Run ———

a d a d\
e | /9\
b f g /b f ]
c c \
h h
e Given a weighted graph G, the algorithm first computes a
MST for GG, T, and then arbitrarily selects a root node r of ﬂ‘)d/%\e\
ZAN

|
T. b f
e It then lets L be the list of the vertices visited in a depth
first traversal of T starting at r. "
e Finally, it returns the Hamiltonian Cycle, H, that visits the

fi h h h igh j
vertices in the order L. The top left figure shows the graph G (edge weights are just

the Euclidean distances between vertices); the top right figure
shows the MST T. The bottom left figure shows the depth
first walk on T, W = (a,b,c,b,h,b,a,d, e, f,e,g,e,d,a); the bottom
right figure shows the Hamiltonian cycle H obtained by deleting
repeat visits from W, H = (a,b,c, h,d,e, f,g).
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— Analysis —— — Analysis ——

The first step of the algorithm takes O(|E| + |V|log |V]) (if Now let W be a depth first walk of T' which traverses each
we use Prim's algorithm) edge exactly twice (similar to what you did in the hw)

The second step is O(|V]) In our example, W = (a,b,c,b,h,b,a,d,e, f,e,g,e,d,a)

The third step is O(|V]). Note that ¢(W) = 2¢(T)

Hence the run time of the entire algorithm is polynomial This implies that ¢(W) < 2c¢(Hx)
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— Analysis —— — Analysis ——
An important fact about this algorithm is that: the cost of the e Unfortunately, W is not a Hamiltonian cycle since it visits
MST is less than the cost of the shortest Hamiltonian cycle. some vertices more than once
e However, we can delete a visit to any vertex and the cost will
e To see this, let T be the MST and let Hx be the shortest not increase because of the triangle inequality. (The path
Hamiltonian cycle. without an intermediate vertex can only be shorter)
e Note that if we remove one edge from Hx*, we have a span- e By repeatedly applying this operation, we can remove from
ning tree, T’ W all but the first visit to each vertex, without increasing
e Finally, note that w(Hx*) > w(T") > w(T) the cost of W.
e Hence w(Hx*) > w(T) e In our example, this will give us the ordering H = (a, b,c, h,d, e, f, g)
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—— Analysis ——

By the last slide, c(H) < ¢(W).

So c¢(H) < (W) = 2¢(T) < 2c(Hx)

Thus, c(H) < 2c¢(Hx*)

In other words, the Hamiltonian cycle found by the algorithm
has cost no more than twice the shortest Hamiltonian cycle.
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— Take Away ——

e Many real-world problems can be shown to not have an effi-
cient solution unless P = NP (these are the NP-Hard prob-
lems)

e However, if a problem is shown to be NP-Hard, all hope is
not lost!

e In many cases, we can come up with an provably good ap-
proximation algorithm for the NP-Hard problem.

33




