University of New Mexico
Department of Computer Science

First Midterm Examination

CS 362 Data Structures and Algorithms
Spring, 2006

Name:

Email:

Print your name and email, neatly in the space provided above; print your name at the upper

right corner of every page. Please print legibly.

This is an closed book exam. You are permitted to use only two pages of “cheat sheets” that
you have brought to the exam and a calculator. Nothing else is permitted.

Do all five problems in this booklet. Show your work! You will not get partial credit if we

cannot figure out how you arrived at your answer.

Write your answers in the space provided for the corresponding problem. Let us know if you

need more paper.

Don’t spend too much time on any single problem. The questions are weighted equally. If

you get stuck, move on to something else and come back later.

If any question is unclear, ask us for clarification.

Question | Points | Score | Grader
1 20
2 20
3 20
4 20
5 20
Total 100

1. Short Answer

Multiple Choice:

The following choices will be used for the multiple choice problems.

(a

(b) ©(logn)
(c) ©(vn)
(d

[§]

—

(
(
(g
(h

N e e e S N N N
R R e e N
S
—_ —

For each of the questions below, choose one of the above possible answers. Please write the
letter of your chosen answer to the left of the question.

(a) 4log n

(b) Amount of time required by the dynamic programming algorithm for finding the optimal
parenthesization of a sequence of n matrices

(c) Worst case cost of n calls to Insert in a Dynamic Table
(d) Solution to the recurrence T'(n) = 47 (n/2) + 3
(e) Solution to the recurrent T'(n) = 2T (n/4) + n?

True or False: Justify your answer briefly (10 points total). Circle your final answers.

(a) If an operation takes O(1) worst case time, then it takes O(1) amortized time.
(b) Greedy algorithms do not always find the correct solutions
(c) (logn)* is o(y/n)
(d)

)

(e) A dynamic programming solution is typically faster than a standard recursive solution

(logn)? is O(logn)

2. Annihilators

Consider the following function:

int f (int n){
if (n==0) return O;
else if (n==1) return 1;

elseq{
val = 3*%f (n-1) -2%f(n-2);
val += n;

return val;

}
}

(a) Let f(n) be the value returned by the function f when given input n. Write a recurrence
relation for f(n)

(b) Now give the general form for the solution for f(n) using annihilators. You need not
solve for the constants.

3. Dynamic Programming

Consider a new variant of the string alignment problem where the cost of a column is defined
to be 1 if the two characters are the same and 2 if the two characters are different. The cost
of the alignment is then defined to be the product of the costs of all the columns. Assume
that the cost of aligning two null strings is 1 (i.e. an alignment must use at least one column).
We want to find an alignment with minimal cost. For example in this new variant, the align-
ment below would have cost 4 and would be an optimal alignment since it maximizes the cost.

F O O D

M O D

(a) The recurrence relation for the optimal cost of aligning two strings A and B in the
original variant of the string alignment problem is given in the formula below. E(i,7)
is the value of aligning A[0..i] and BJ0..j]. Give the modifications needed to get a
recurrence relation for the optimal cost in the new variant of the problem. Please cross
out the values (or words) to change and write the new values next to the crossed out
ones.

E(0,j) = j for all j,

E(i,0) = dforalli
E(i—1,7)+1,
B(i,j—1)+1,
E(i,j) = min

E(i—1,j — 1)+ 0 if Ali] = B[]
E(i—1,j — 1)+ 1if Ali] # B[j]

(b) Now use this new recurrence to find the maximal alignment cost under this new variant
for the two strings ba and cb. Do this by filling in the nine entries in the following
dynamic programming table. Also include the arrows used to reconstruct a minimal
solution. To the right of the table, give an alignment which achieves the maximal cost.

4. Amortized Analysis

Consider a list of numbers that has the following operations defined on it:

e Append(z): Appends the number z to the front of the list
e Aggregate(): Removes all numbers from the list, computes their median, and then ap-
pends the median back onto the list.

Assume these operations have the following costs:

e Append(z) - cost equals 1

e Aggregate() - cost equals the number of ints on the list plus one

(a) Assume we perform n operations on the list. What is the worst case run time of a single
operation? Justify your answer.

(b) Accounting Method. Now you will show that the amortized cost of these operations are
small using the taxation (accounting) method.

i. First give the amount that you will charge Apppend() and the amount that you will
charge Aggregate().

ii. Next show how you will use these charges to pay for the actual costs of these oper-
ations.

iii. Finally write down the amortized cost per operation.

(¢) Potential Method. You will next use the potential method to get the amortized cost per
operation. Let L; be the list after the i-th operation and let num(L;) be the number of
items on L;. You will use the following potential function:

¢i = num(Ly)

i. First show that this potential function is valid (i.e. ¢9 = 0 and ¢; > 0 for all 7)

ii. Next use this potential function to calculate the amortized costs of Append and
Aggregate (Recall that a; = ¢; + ¢; — ¢;—1 where a; is the amortized cost of the i-th
operation and ¢; is the actual cost)

5. Recurrences

In this problem, you will use recurrence relations to analyze an interesting “magic” trick. The
trick is done as follows.

Choose any two integers and write them one after another. Now form a third number by
adding the first two numbers you’'ve written down. Form a fourth number by adding the
second and third; a fifth number by adding the third and fourth, etc. until you have a
sequence of twenty numbers. Now divide the twentieth number by the nineteenth. The value
you get will be a good approximation to the “golden ratio”, ¢ (recall that ¢ = (1 + /5) /2,
which is approximately 1.6180339...).

Can you explain why this trick works? Hint: Write down a recurrence relation 7'(n) for the
n-th number in the sequence. Now get the general solution to this recurrence relation using
annihilators. Next, figure out what is a good approximation to this solution for large n.
Finally compute a good approximation to T'(n)/T(n — 1) for large n.

