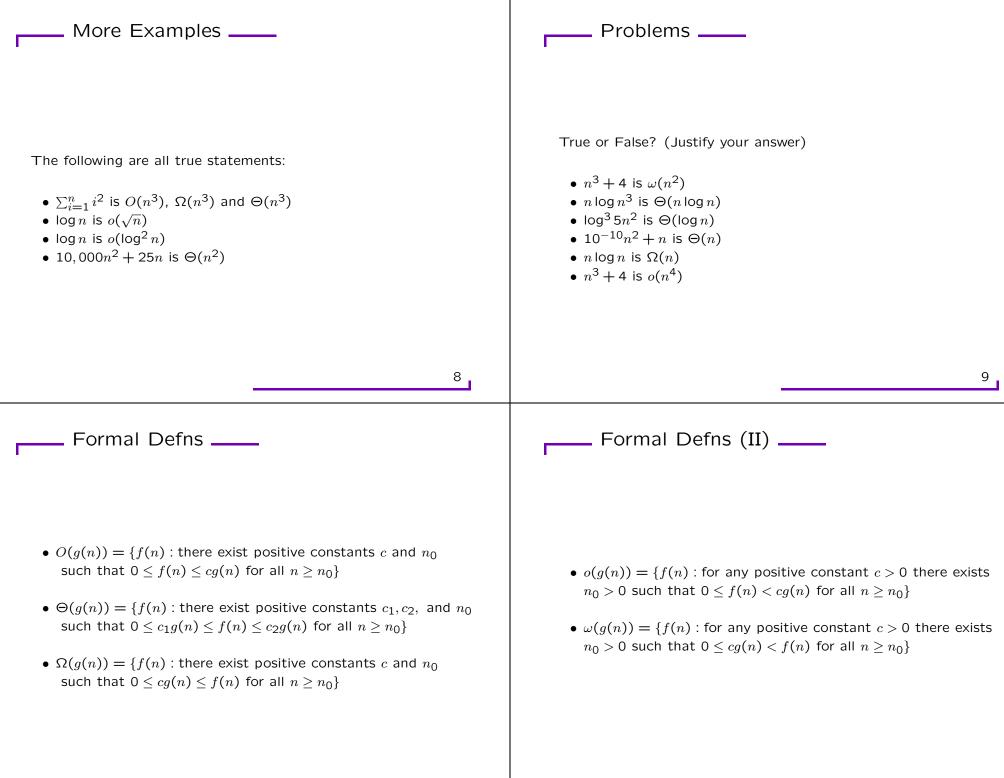


Example _____ Relatives of big-O Recall the following relatives of big-O: • We can solve for appropriate constants: 10n + 100 < cn(1)(2) 10 + 100/n < c"<" Ο Θ "=" • So if n > 1, then c should be greater than 110. "≥" "<" Ω • In other words, for all n > 1, 10n + 100 < 110n0 • So 10n + 100 is O(n)">" 4 5 Relatives of big-O _____ Rule of Thumb • Let f(n), q(n) be two functions of n• Let $f_1(n)$, be the fastest growing term of f(n), stripped of its coefficient. • Let $g_1(n)$, be the fastest growing term of g(n), stripped of When would you use each of these? Examples: its coefficient. "<" This algorithm is $O(n^2)$ (i.e. worst case is $\Theta(n^2)$) Ο "=" This algorithm is $\Theta(n)$ (best and worst case are $\Theta(n)$) Then we can say: Θ Ω ">" Any comparison-based algorithm for sorting is $\Omega(n \log n)$ "<" Can you write an algorithm for sorting that is $o(n^2)$? 0 • If $f_1(n) < g_1(n)$ then f(n) = O(g(n))This algorithm is not linear, it can take time $\omega(n)$ ">" ω • If $f_1(n) > g_1(n)$ then $f(n) = \Omega(g(n))$ • If $f_1(n) = g_1(n)$ then $f(n) = \Theta(g(n))$ • If $f_1(n) < g_1(n)$ then f(n) = o(g(n))• If $f_1(n) > g_1(n)$ then $f(n) = \omega(g(n))$

6

7



Another Example _____ In-Class Exercise Show that for f(n) = n + 100 and $q(n) = (1/2)n^2$, that $f(n) \neq 100$ • Let $f(n) = 10 \log^2 n + \log n$, $g(n) = \log^2 n$. Let's show that $\Theta(q(n))$ $f(n) = \Theta(g(n)).$ • We want positive constants c_1, c_2 and n_0 such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$ • What statement would be true if $f(n) = \Theta(q(n))$? • Show that this statement can not be true. $0 < c_1 \log^2 n < 10 \log^2 n + \log n < c_2 \log^2 n$ Dividing by $\log^2 n$, we get: $0 < c_1 < 10 + 1/\log n < c_2$ • If we choose $c_1 = 1$, $c_2 = 11$ and $n_0 = 2$, then the above inequality will hold for all $n > n_0$ 12 13 Recurrence Relation Review _____ Recurrence Relations _____ "Oh how should I not lust after eternity and after the nuptial ring of rings, the ring of recurrence" - Friedrich Nietzsche, Thus Spoke Zarathustra • Whenever we analyze the run time of a recursive algorithm, • T(n) = 2 * T(n/2) + n is an example of a *recurrence* relation we will first get a recurrence relation • To get the actual run time, we need to solve the recurrence • A *Recurrence Relation* is any equation for a function T, where relation T appears on both the left and right sides of the equation. • We always want to "solve" these recurrence relation by getting an equation for T, where T appears on just the left side of the equation

14

