Today's Outline ——

—
CS 362, Lecture 1 - .
e Administrative Info
) e Asymptotic Analysis Review
Jared Saia . .
) ) ) e Recurrence Relation Review
University of New Mexico
L 1
Formal Defn of Big-O —— L Example ——

—

e Let's show that f(n) = 10n+ 100 is O(g(n)) where g(n) =n

e Recall the formal definition of Big-O notation: e We need to give constants ¢ and ng such that f(n) < cg(n)

e A function f(n) is O(g(n)) if there exist positive constants c
and ng such that f(n) < cg(n) for all n > ng

for all n > ng
e In other words, we need constants ¢ and ng such that 10n +

100 < ¢n for all n > ng




—

Example ——

We can solve for appropriate constants:

o Relatives of big-O ——

Recall the following relatives of big-O:

10n 4+ 100 < cn (1)
104 100/n < ¢ (2) o <
e So if n > 1, then ¢ should be greater than 110. g :
e In other words, for all n > 1, 10n 4+ 100 < 110n o 2
e SO0 10n+ 100 is O(n) W s
4 | 5
Relati f big-O ——— Rule of Thumb ——
— elatives of big-O —— Rule o umb

When would you use each of these? Examples:

ES000

HSH

“Z”
H<H
u>n

This algorithm is O(n?) (i.e. worst case is ©(n?))

This algorithm is ©(n) (best and worst case are ©(n))
Any comparison-based algorithm for sorting is Q(nlogn)
Can you write an algorithm for sorting that is o(n2)?
This algorithm is not linear, it can take time w(n)

e Let f(n), g(n) be two functions of n

e Let f1(n), be the fastest growing term of f(n), stripped of
its coefficient.

e Let g1(n), be the fastest growing term of g(n), stripped of
its coefficient.

Then we can say:

If f1(n) < g1(n) then f(n) = O(g(n))
If f1(n) = g1(n) then f(n) = Q(g(n))
If f1(n) = g1(n) then f(n) = B(g(n))
If f1(n) < g1(n) then f(n) = o(g(n))

If f1(n) > g1(n) then f(n) = w(g(n))




Problems

More Examples ——

—

True or False? (Justify your answer)
The following are all true statements:
n3 4+ 4 is w(n?)
nlogn3 is ©(nlogn)
log35n2 is ©(logn)
1071052 4 n is ©(n)
nlogn is Q(n)

n3 4+ 4 is o(n%)

e 37 12 is O(n3), Q(n3) and ©(n3)
e logn is o(y/n)

e logn is o(log?n)

e 10,000n2 + 25n is ©(n?)

Formal Defns

S Formal Defns (II) —

—

e O(g(n)) = {f(n) : there exist positive constants ¢ and ng
such that 0 < f(n) < cg(n) for all n > ng} e o(g(n)) = {f(n) : for any positive constant ¢ > 0 there exists

ng > 0 such that 0 < f(n) < cg(n) for all n > ng}

e O(g(n)) = {f(n) : there exist positive constants c1,cs, and ng
such that 0 < c1g9(n) < f(n) <cpg(n) for all n > np} e w(g(n)) = {f(n) : for any positive constant ¢ > 0 there exists

ng > 0 such that 0 < cg(n) < f(n) for all n > ng}
e Q(g(n)) = {f(n) : there exist positive constants c and ng
such that 0 < cg(n) < f(n) for all n > ng}

10I 11I




Another Example —— In-Class Exercise ————

I_ I_

e Let f(n) = 1010g2n + logn, g(n) = log2n. Let's show that Show that for f(n) =n+ 100 and g(n) = (1/2)n?, that f(n) #
f(n) =(g(n)). O(g(n))

e We want positive constants c1,co and ng
such that 0 < c19(n) < f(n) < cpg(n) for all n > ng e What statement would be true if f(n) = ©(g(n)) ?

Show that this statement can not be true.
0<¢ql092n < 1010g2n + logn < colog?n ¢

Dividing by log?n, we get:
0<¢1 <10+ 1/logn <cp

e If we choose ¢;1 = 1, ¢cp = 11 and ng = 2, then the above
inequality will hold for all n > ng

12 13

— Recurrence Relation Review — Recurrence Relations —

“Oh how should I not lust after eternity and after the nuptial
ring of rings, the ring of recurrence” - Friedrich Nietzsche, Thus
Spoke Zarathustra

e Whenever we analyze the run time of a recursive algorithm,

e T(n) =2xT(n/2)+n is an example of a recurrence relation we will first get a recurrence relation
e A Recurrence Relation is any equation for a function T', where e To get the actual run time, we need to solve the recurrence
T appears on both the left and right sides of the equation. relation

e We always want to ‘“solve” these recurrence relation by get-
ting an equation for T', where T appears on just the left side
of the equation

14 15 |




Substitution Method ——

—— —— Example ——

e Let's guess that the solution to T(n) = 2% T(n/2) + n is

e One way to solve recurrences is the substitution method aka T(n) = O(nlogn)

“guess and check” e In other words, T(n) < cnlogn for all n > ng, for some
e What we do is make a good guess for the solution to T'(n), positive constants c¢,ng

and then try to prove this is the solution by induction e We can prove that T(n) < cnlogn is true by plugging back

into the recurrence

16 17

L Proof by Induction —— L Todo ———

e ILH.: Forall j<n, T(j) <cjlogj

e I.S.:
T(n) = 2T(n/2)+n (3)
< 2(en/2log(n/2)) +n (4) e Read Syllabus
= cnlog(n/2) +n (5) e Visit the class web page off of www.cs.unm.edu/~saia/
= cn(logn —10g2) +n (6) e Sign up for the class mailing list (cs362)
= cnlogn—cn+n (7 e Read Chapter 3 and 4 in the text
< cnlogn (8)

The second step uses the I.H. and the last step holds for alln > 0
ife>1

18 19 |




