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Today’s Outline

• Fractional Knapsack Wrapup

• Amortized Analysis
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Proof

• Assume the objects are sorted in order of cost per pound.

Let vi be the value for item i and let wi be its weight.

• Let xi be the fraction of object i selected by greedy and let

V be the total value obtained by greedy

• Consider some arbitrary solution, B, and let x′i be the fraction

of object i taken in B and let V ′ be the total profit obtained

by B

• We want to show that V ′ ≤ V or that V − V ′ ≥ 0
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Proof

• Let k be the smallest index with xk < 1

• Note that for i ≤ k, xi = 1 and for i > k, xi = 0

• You will show that for all i,

(xi − x′i)
vi

wi
≥ (xi − x′i)

vk

wk
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Proof

V − V ′ =
n∑

i=1

xivi −
n∑

i=1

x′ivi (1)

=
n∑

i=1

(xi − x′i) ∗ vi (2)

=
n∑

i=1

(xi − x′i) ∗ wi

(
vi

wi

)
(3)

≥
n∑

i=1

(xi − x′i) ∗ wi

(
vk

wk

)
(4)

≥
(

vk

wk

)
∗

n∑
i=1

(xi − x′i) ∗ wi (5)

≥ 0 (6)
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Proof

• Note that the last step follows because vk
wk

is positive and

because:
n∑

i=1

(xi − x′i) ∗ wi =
n∑

i=1

xiwi −
n∑

i=1

x′i ∗ wi (7)

= W −W ′ (8)

≥ 0. (9)

• Where W is the total weight taken by greedy and W ′ is the

total weight for the strategy B

• We know that W ≥ W ′
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In-Class Exercise

Consider the inequality:

(xi − x′i)
vi

wi
≥ (xi − x′i)

vk

wk

• Q1: Show this inequality is true for i < k

• Q2: Show it’s true for i = k

• Q3: Show it’s true for i > k
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Q1

(xi − x′i)
vi

wi
≥ (xi − x′i)

vk

wk

• Q1: Show that the inequality is true for i < k

• For i < k, (xi − x′i) ≥ 0

• If (xi − x′i) = 0, trivially true. Otherwise, can divide both

sides of the inequality by xi − x′i to get

vi

wi
≥

vk

wk
.

• This is true since the items are sorted by profit per weight
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Q2

(xi − x′i)
vi

wi
≥ (xi − x′i)

vk

wk

• Q2: Show that the inequality is true for i = k

• When i = k, we have

(xk − x′k)
vk

wk
≥ (xk − x′k)

vk

wk

• Which is true since the left side equals the right side
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Q3

(xi − x′i)
vi

wi
≥ (xi − x′i)

vk

wk

• Q3: Show that the inequality is true for i > k

• For i < k, (xi − x′i) ≤ 0

• If (xi−x′i) = 0, trivially true. Otherwise can divide both sides

of the inequality by xi − x′i to get

vi

wi
≤

vk

wk
.

• This is obviously true since the items are sorted by profit per

weight

• Note that the direction of the inequality changed when we

divided by (xi − x′i), since it is negative
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Amortized Analysis

“I will gladly pay you Tuesday for a hamburger today” - Welling-

ton Wimpy

• In amortized analysis, time required to perform a sequence of

data structure operations is averaged over all the operations

performed

• Typically used to show that the average cost of an operation

is small for a sequence of operations, even though a single

operation can cost a lot
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Amortized analysis

Amortized analysis is not average case analysis.

• Average Case Analysis: the expected cost of each operation

• Amortized analysis: the average cost of each operation in

the worst case

• Probability is not involved in amortized analysis
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Types of Amortized Analysis

• Aggregate Analysis

• Accounting or Taxation Method

• Potential method

• We’ll see each method used for 1) a stack with the additional

operation MULTIPOP and 2) a binary counter
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Aggregate Analysis

• We get an upperbound T (n) on the total cost of a sequence

of n operations. The average cost per operation is then

T (n)/n, which is also the amortized cost per operation
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Stack with Multipop

• Recall that a standard stack has the operations PUSH and

POP

• Each of these operations runs in O(1) time, so let’s say the

cost of each is 1

• Now for a stack S and number k, let’s add the operation

MULTIPOP which removes the top k objects on the stack

• Multipop just calls Pop either k times or until the stack is

empty
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Multipop

• Q: What is the running time of Multipop(S,k) on a stack of

s objects?

• A: The cost is min(s,k) pop operations

• If there are n stack operations, in the worst case, a single

Multipop can take O(n) time
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Multipop Analysis

• Let’s analyze a sequence of n push, pop, and multipop op-

erations on an initially empty stack

• The worst case cost of a multipop operation is O(n) since

the stack size is at most n, so the worst case time for any

operation is O(n)

• Hence a sequence of n operations costs O(n2)
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The Problem

• This analysis is technically correct, but overly pessimistic

• While some of the multipop operations can take O(n) time,

not all of them can

• We need some way to average over the entire sequence of n

operations
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Aggregate Analysis

• In fact, the total cost of n operations on an initially empty

stack is O(n)

• Why? Because each object can be popped at most once for

each time that it is pushed

• Hence the number of times POP (including calls within Mul-

tipop) can be called on a nonempty stack is at most the

number of Push operations which is O(n)
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Aggregate Analysis

• Hence for any value of n, any sequence of n Push, Pop, and

Multipop operations on an initially empty stack takes O(n)

time

• The average cost of an operation is thus O(n)/n = O(1)

• Thus all stack operations have an amortized cost of O(1)
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Another Example

Another example where we can use aggregate analysis:

• Consider the problem of creating a k bit binary counter that

counts upward from 0

• We use an array A[0..k − 1] of bits as the counter

• A binary number x that is stored in A has its lowest-order bit

in A[0] and highest order bit in A[k − 1] (x =
∑k−1

i=0 A[i] ∗ 2i)
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Binary Counter

• Initially x = 0 so A[i] = 0 for all i = 0,1, . . . , k − 1

• To add 1 to the counter, we use a simple procedure which

scans the bits from right to left, zeroing out 1’s until it finally

find a zero bit which it flips to a 1
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Increment

Increment(A){

i = 0;

while(i<k && A[i]=1){

A[i] = 0;

i++;

}

if (i<k)

A[i] = 1;

}
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Analysis

• It’s not hard to see that in the worst case, the increment

procedure takes time Θ(k)

• Thus a sequence of n increments takes time O(nk) in the

worst case

• Note that again this bound is correct but overly pessimistic

- not all bits flip each time increment is called!
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Aggregate Analysis

• In fact, we can show that a sequence of n calls to Increment

has a worst case time of O(n)

• A[0] flips every time Increment is called, A[1] flips over every

other time, A[2] flips over every fourth time, . . .

• Thus if there are n calls to increment, A[0] flips n times, A[1]

flips bn/2c times, A[2] flips bn/4c times
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Aggregate Analysis

• In general, for i = 0, . . . blognc, bit A[i] flips
⌊
n/2i

⌋
times in a

sequence of n calls to Increment on an initially zero counter

• For i > blognc, bit A[i] never flips

• Total number of flips in the sequence of n calls is thus

blognc∑
i=0

⌊
n

2i

⌋
< n

∞∑
i=0

1

2i
(10)

= 2n (11)
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Aggregate Analysis

• Thus the worst-case time for a sequence of n Increment

operations on an initially empty counter is O(n)

• The average cost of each operation in the worst case then

is O(n)/n = O(1)
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Accounting or Taxation Method

• The second method is called the accounting method in the

book, but a better name might be the taxation method

• Suppose it costs us a dollar to do a Push or Pop

• We can then measure the run time of our algorithm in dollars

(Time is money!)
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Taxation Method for Multipop

• Instead of paying for each Push and Pop operation when they

occur, let’s tax the pushes to pay for the pops

• I.e. we tax the push operation 2 dollars, and the pop and

multipop operations 0 dollars

• Then each time we do a push, we spend one dollar of the

tax to pay for the push and then save the other dollar of the

tax to pay for the inevitable pop or multipop of that item

• Note that if we do n operations, the total amount of taxes

we collect is then 2n
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Taxation Method

• Like any good government (ha ha) we need to make sure

that: 1) our taxes are low and 2) we can use our taxes to

pay for all our costs

• We already know that our taxes for n operations are no more

than 2n dollars

• We now want to show that we can use the 2 dollars we collect

for each push to pay for all the push, pop and multipop

operations
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Taxation Method

• This is easy to show. When we do a push, we use 1 dollar

of the tax to pay for the push and then store the extra dollar

with the item that was just pushed on the stack

• Then all items on the stack will have one dollar stored with

them

• Whenever we do a Pop, we can use the dollar stored with

the item popped to pay for the cost of that Pop

• Moreover, whenever we do a Multipop, for each item that

we pop off in the Multipop, we can use the dollar stored with

that item to pay for the cost of popping that item
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Taxation Method

• We’ve shown that we can use the 2 tax on each item pushed

to pay for the cost of all pops, pushes and multipops.

• Moreover we know that this taxation scheme collects at most

2n dollars in taxes over n stack operations

• Hence we’ve shown that the amortized cost per operation is

O(1)
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Taxation Method for Binary Counter

• Let’s now use the taxation method to show that the amor-

tized cost of the Increment algorithm is O(1)

• Let’s say that it costs us 1 dollar to flip a bit

• What is a good taxation scheme to ensure that we can pay

for the costs of all flips but that we keep taxes low?
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Taxation Scheme

• Let’s tax the algorithm 2 dollars to set a bit to 1

• Now we need to show that: 1) this scheme has low total

taxes and 2) we will collect enough taxes to pay for all of

the bit flips

• Showing overall taxes are low is easy: Each time Increment

is called, it sets at most one bit to a 1

• So we collect exactly 2 dollars in taxes each time increment

is called

• Thus over n calls to Increment, we collect 2n dollars in taxes
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Taxation Scheme

• We now need to show that our taxation scheme has enough

money to pay for the costs of all operations

• This is easy: Each time we set a bit to a 1, we collect 2

dollars in tax. We use one dollar to pay for the cost of

setting the bit to a 1, then we store the extra dollar on that

bit

• When the bit gets flipped back from a 1 to a 0, we use the

dollar already on that bit to pay for the cost of the flip!
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Binary Counter

• We’ve shown that we can use the 2 tax each time a bit is

set to a 1 to pay for all operations which flip a bit

• Moreover we know that this taxation scheme collects 2n dol-

lars in taxes over n calls to Increment

• Hence we’ve shown that the amortized cost per call to In-

crement is O(1)
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In Class Exercise

• A sequence of Pushes and Pops is performed on a stack

whose size never exceeds k

• After every k operations, a copy of the entire stack is made

for backup purposes

• Show that the cost of n stack operations, including copying

the stack, is O(n)
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In Class Exercise

• A sequence of Pushes and Pops is performed on a stack

whose size never exceeds k

• After every k operations, a copy of the entire stack is made

for backup purposes

• Show that the cost of n stack operations, including copying

the stack, is O(n)
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In Class Exercise

• Q1: What is your taxation scheme?

• Q2: What is the maximum amount of taxes this scheme

collects over n operations?

• Q3: Show that your taxation scheme can pay for the costs

of all operations
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