Today's Outline \_\_\_\_\_

CS 362, Lecture 10

Jared Saia University of New Mexico

- Fractional Knapsack Wrapup
- Amortized Analysis

Proof \_\_\_\_\_

- Assume the objects are sorted in order of cost per pound. Let  $v_i$  be the value for item i and let  $w_i$  be its weight.
- Let  $x_i$  be the *fraction* of object *i* selected by greedy and let V be the total value obtained by greedy
- Consider some arbitrary solution, B, and let  $x'_i$  be the fraction of object i taken in B and let V' be the total profit obtained by B
- We want to show that  $V' \leq V$  or that  $V V' \geq 0$

\_\_\_ Proof \_\_\_\_

- Let k be the smallest index with  $x_k < 1$
- Note that for  $i \leq k$ ,  $x_i = 1$  and for i > k,  $x_i = 0$
- You will show that for all *i*,

$$(x_i - x_i')rac{v_i}{w_i} \ge (x_i - x_i')rac{v_k}{w_k}$$

$$V - V' = \sum_{i=1}^{n} x_i v_i - \sum_{i=1}^{n} x'_i v_i$$
 (1)

$$= \sum_{i=1}^{n} (x_i - x'_i) * v_i$$
 (2)

$$= \sum_{i=1}^{n} (x_i - x'_i) * w_i \left(\frac{v_i}{w_i}\right)$$
(3)

$$\geq \sum_{i=1}^{n} (x_i - x'_i) * w_i \left(\frac{v_k}{w_k}\right)$$
(4)

$$\geq \left(\frac{v_k}{w_k}\right) * \sum_{i=1}^n (x_i - x'_i) * w_i \tag{5}$$
  
$$\geq 0 \tag{6}$$

- Note that the last step follows because  $\frac{v_k}{w_k}$  is positive and because:

$$\sum_{i=1}^{n} (x_i - x'_i) * w_i = \sum_{i=1}^{n} x_i w_i - \sum_{i=1}^{n} x'_i * w_i$$
(7)

$$W - W' \tag{8}$$

• Where W is the total weight taken by greedy and  $W^\prime$  is the total weight for the strategy B

=

>

• We know that  $W \ge W'$ 

\_ Q1 \_\_\_\_

Proof \_\_\_\_\_

In-Class Exercise

Consider the inequality:

$$(x_i - x_i')\frac{v_i}{w_i} \ge (x_i - x_i')\frac{v_k}{w_k}$$

- Q1: Show this inequality is true for i < k
- Q2: Show it's true for i = k
- Q3: Show it's true for i > k

5

- $(x_i-x_i')rac{v_i}{w_i} \geq (x_i-x_i')rac{v_k}{w_k}$
- Q1: Show that the inequality is true for  $i < k \label{eq:q1}$
- For i < k,  $(x_i x_i') \ge 0$
- If  $(x_i x'_i) = 0$ , trivially true. Otherwise, can divide both sides of the inequality by  $x_i x'_i$  to get

$$\frac{v_i}{w_i} \ge \frac{v_k}{w_k}.$$

• This is true since the items are sorted by profit per weight

6

4

Q2 . Q3  $(x_i - x_i') rac{v_i}{w_i} \geq (x_i - x_i') rac{v_k}{w_k}$  $(x_i - x_i')\frac{v_i}{w_i} \ge (x_i - x_i')\frac{v_k}{w_k}$ • Q3: Show that the inequality is true for i > k• For i < k,  $(x_i - x'_i) \le 0$ • If  $(x_i - x'_i) = 0$ , trivially true. Otherwise can divide both sides • Q2: Show that the inequality is true for i = kof the inequality by  $x_i - x'_i$  to get • When i = k, we have  $\frac{v_i}{w_i} \le \frac{v_k}{w_k}.$  $(x_k-x_k')rac{v_k}{w_k} \geq (x_k-x_k')rac{v_k}{w_k}$ • This is obviously true since the items are sorted by profit per • Which is true since the left side equals the right side weight • Note that the direction of the inequality changed when we divided by  $(x_i - x'_i)$ , since it is negative 8 9 Amortized Analysis \_\_\_\_\_ Amortized analysis \_\_\_\_\_ "I will gladly pay you Tuesday for a hamburger today" - Wellington Wimpy Amortized analysis is *not* average case analysis. • In amortized analysis, time required to perform a sequence of • Average Case Analysis: the expected cost of each operation data structure operations is averaged over all the operations • Amortized analysis: the average cost of each operation in performed the worst case • Typically used to show that the average cost of an operation Probability is not involved in amortized analysis is small for a sequence of operations, even though a single operation can cost a lot



## Multipop Analysis \_\_\_\_\_ The Problem • Let's analyze a sequence of n push, pop, and multipop op-• This analysis is technically correct, but overly pessimistic erations on an initially empty stack • While some of the multipop operations can take O(n) time, • The worst case cost of a multipop operation is O(n) since not all of them can the stack size is at most n, so the worst case time for any • We need some way to average over the entire sequence of noperation is O(n)operations • Hence a sequence of n operations costs $O(n^2)$ 16 17 Aggregate Analysis \_\_\_\_\_ Aggregate Analysis \_\_\_\_\_ • In fact, the total cost of *n* operations on an initially empty stack is O(n)• Hence for any value of n, any sequence of n Push, Pop, and • Why? Because each object can be popped at most once for Multipop operations on an initially empty stack takes O(n)each time that it is pushed time • Hence the number of times POP (including calls within Mul-• The average cost of an operation is thus O(n)/n = O(1)• Thus all stack operations have an *amortized* cost of O(1)tipop) can be called on a nonempty stack is at most the number of Push operations which is O(n)



## \_ Aggregate Analysis \_\_\_\_\_



• In general, for  $i = 0, ... \lfloor \log n \rfloor$ , bit A[i] flips  $\lfloor n/2^i \rfloor$  times in a • In fact, we can show that a sequence of n calls to Increment sequence of n calls to Increment on an initially zero counter has a worst case time of O(n)• For  $i > |\log n|$ , bit A[i] never flips • A[0] flips every time Increment is called, A[1] flips over every • Total number of flips in the sequence of n calls is thus other time, A[2] flips over every fourth time, ...  $\sum_{i=0}^{\lfloor \log n \rfloor} \left\lfloor \frac{n}{2^i} \right\rfloor < n \sum_{i=0}^{\infty} \frac{1}{2^i}$ • Thus if there are n calls to increment, A[0] flips n times, A[1](10)flips |n/2| times, A[2] flips |n/4| times = 2n(11)24 25 Aggregate Analysis \_\_\_\_\_ Accounting or Taxation Method \_\_\_\_\_ • The second method is called the accounting method in the • Thus the worst-case time for a sequence of n Increment book, but a better name might be the taxation method operations on an initially empty counter is O(n)• Suppose it costs us a dollar to do a Push or Pop • The average cost of each operation in the worst case then • We can then measure the run time of our algorithm in dollars is O(n)/n = O(1)(Time is money!)

Taxation Method for Multipop

Taxation Method \_\_\_\_\_

- Instead of paying for each Push and Pop operation when they occur, let's tax the pushes to pay for the pops
- I.e. we tax the push operation 2 dollars, and the pop and multipop operations 0 dollars
- Then each time we do a push, we spend one dollar of the tax to pay for the push and then *save* the other dollar of the tax to pay for the inevitable pop or multipop of that item
- Note that if we do n operations, the total amount of taxes we collect is then 2n

- Like any good government (ha ha) we need to make sure that: 1) our taxes are low and 2) we can use our taxes to pay for all our costs
- We already know that our taxes for n operations are no more than 2n dollars
- We now want to show that we can use the 2 dollars we collect for each push to pay for all the push, pop and multipop operations

| 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 29                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Taxation Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Taxation Method                                                                                                                                                                                                                                                                                                                |
| <ul> <li>This is easy to show. When we do a push, we use 1 dollar of the tax to pay for the push and then store the extra dollar with the item that was just pushed on the stack</li> <li>Then all items on the stack will have one dollar stored with them</li> <li>Whenever we do a Pop, we can use the dollar stored with the item popped to pay for the cost of that Pop</li> <li>Moreover, whenever we do a Multipop, for each item that we pop off in the Multipop, we can use the dollar stored with that item to pay for the cost of popping that item</li> </ul> | <ul> <li>We've shown that we can use the 2 tax on each item pushed to pay for the cost of all pops, pushes and multipops.</li> <li>Moreover we know that this taxation scheme collects at most 2n dollars in taxes over n stack operations</li> <li>Hence we've shown that the amortized cost per operation is O(1)</li> </ul> |



## In Class Exercise \_\_\_\_\_ In Class Exercise \_\_\_\_\_ • A sequence of Pushes and Pops is performed on a stack • A sequence of Pushes and Pops is performed on a stack whose size never exceeds kwhose size never exceeds k• After every k operations, a copy of the entire stack is made • After every k operations, a copy of the entire stack is made for backup purposes for backup purposes • Show that the cost of *n* stack operations, including copying • Show that the cost of *n* stack operations, including copying the stack, is O(n)the stack, is O(n)36 27 In Class Exercise \_\_\_\_\_ • Q1: What is your taxation scheme? • Q2: What is the maximum amount of taxes this scheme collects over n operations? • Q3: Show that your taxation scheme can pay for the costs of all operations