

An Implementation

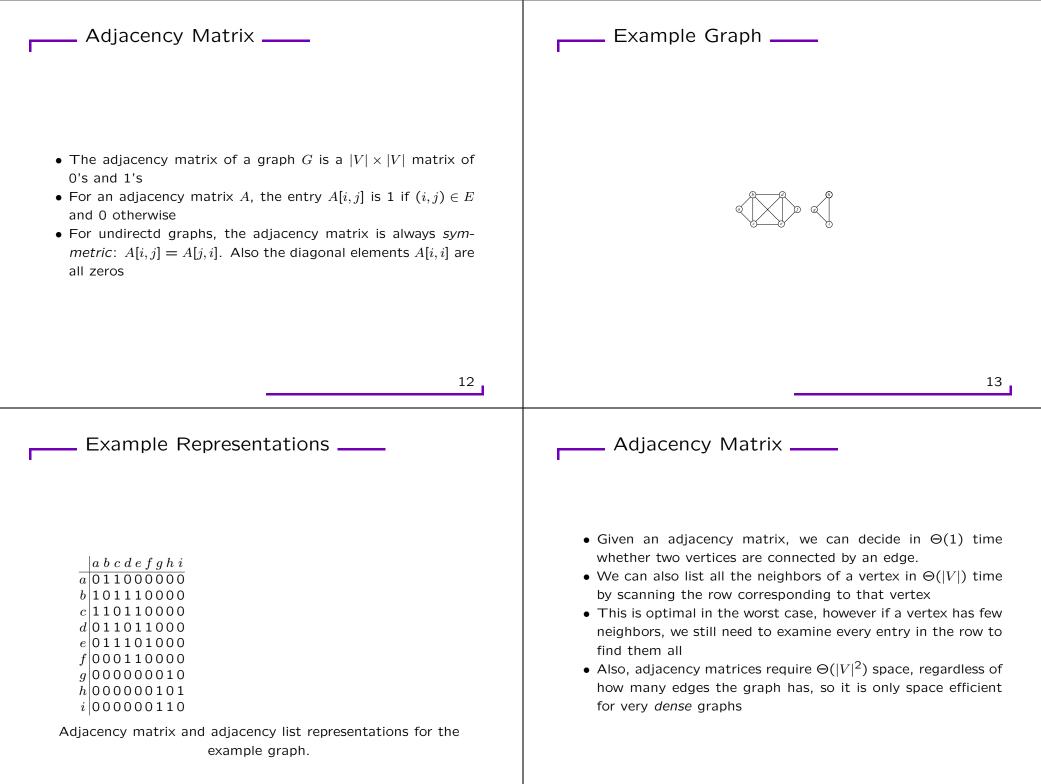
Prim's Algorithm _____

- To implement Prim's algorithm, we keep all edges adjacent to A in a heap
- When we pull the minimum-weight edge off the heap, we first check to see if both its endpoints are in ${\cal A}$
- If not, we add the edge to A and then add the neighboring edges to the heap
- If we implement Prim's algorithm this way, its running time is $O(|E| \log |E|) = O(|E| \log |V|)$
- However, we can do better

- We can speed things up by noticing that the algorithm visits each vertex only once
- Rather than keeping the edges in the heap, we will keep a heap of vertices, where the key of each vertex v is the weight of the minimum-weight edge between v and A (or infinity if there is no such edge)
- Each time we add a new edge to A, we may need to decrease the key of some neighboring vertices

```
4
                                                                                                                                    5
                                                                             Prim-Init _____
     Prim's _____
                                                                         Prim-Init(V,E,s){
                                                                           for each vertex v in V - \{s\}
                                                                             if ((v,s) is in E){
We will break up the algorithm into two parts, Prim-Init and
                                                                               edge(v) = (v,s);
Prim-Loop
                                                                              key(v) = w((v,s));
                                                                             }else{
Prim(V,E,s){
                                                                               edge(v) = NULL;
 Prim-Init(V,E,s);
                                                                               key(v) = infinity;
 Prim-Loop(V,E,s);
                                                                             }
}
                                                                           }
                                                                           Heap-Insert(v);
                                                                         3
```

Prim-Loop	Runtime?
<pre>Prim-Loop(V,E,s){ A = {}; for (i = 1 to V - 1){ v = Heap-ExtractMin(); add edge(v) to A; for (each edge (u,v) in E){ if (u is not in A AND key(u) > w(u,v)){ edge(u) = (u,v); Heap-DecreaseKey(u,w(u,v)); } } } return A; }</pre>	 The runtime of Prim's is dominated by the cost of the heap operations Insert, ExtractMin and DecreaseKey Insert and ExtractMin are each called O(V) times DecreaseKey is called O(E) times, at most twice for each edge If we use a <i>Fibonacci Heap</i>, the amortized costs of Insert and DecreaseKey is O(1) and the amortized cost of ExtractMin is O(log V) Thus the overall run time of Prim's is O(E + V log V) This is faster than Kruskal's unless E = O(V)
8	9
Note	Graph Representation
 This analysis assumes that it is fast to find all the edges that are incident to a given vertex We have not yet discussed how we can do this This brings us to a discussion of how to represent a graph in a computer 	There are two common data structures used to explicity repre- sent graphs • Adjacency Matrices • Adjacency Lists



Adjacency Lists _____

Adjacency Lists _____

- For *sparse* graphs graphs with relatively few edges we're better off with adjacency lists
- An adjacency list is an array of linked lists, one list per vertex
- Each linked list stores the neighbors of the corresponding vertex

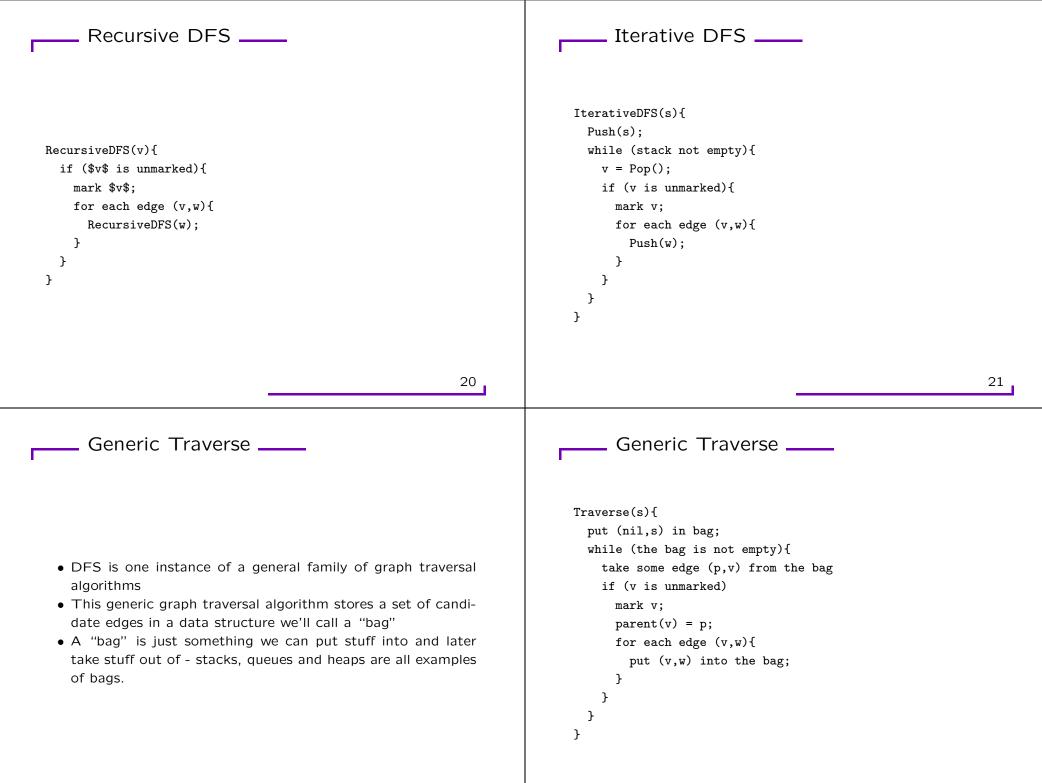
- The total space required for an adjacency list is O(|V| + |E|)
- Listing all the neighbors of a node v takes O(1 + deg(v)) time
- We can determine if (u, v) is an edge in O(1 + deg(u)) time by scanning the neighbor list of u
- Note that we can speed things up by storing the neighbors of a node not in lists but rather in hash tables
- Then we can determine if an edge is in the graph in expected O(1) time and still list all the neighbors of a node v in O(1 + deg(v)) time

16	17
Take Away	Traversing a Graph
	• Suppose we want to visit every node in a connected graph

- If we use the right type of heap and the right graph representation, then Prim's algorithm takes $O(|E| + |V| \log |V|)$
- This compares favorably with Kruskal's algorithm which takes $O(|E| \log |V|)$
- Kruskal's and Prims algorithms are the two main algorithms for finding the minimum spanning tree of a connected graph
- There are many, many other types of problems defined on graphs . . .

• Suppose we want to visit every node in a connected graph (represented either explicitly or implicitly)

- The simplest way to do this is an algorithm called *depth-first* search
- We can write this algorithm recursively or iteratively it's the same both ways, the iterative version just makes the stack explicit
- Both versions of the algorithm are initially passed a source vertex \boldsymbol{v}



Lemma _

Analysis

Proof _____

- Notice that we're keeping *edges* in the bag instead of vertices
- This is because we want to remember when we visit vertex vfor the first time, which previously-visited vertex p put v into the bag
- This vertex p is called the *parent* of v

• Traverse(s) marks each vertex in a connected graph exactly once, and the set of edges (v, parent(v)), with parent(v) not nil, form a spanning tree of the graph.

24 25 Proof _____

- It's obvious that no node is marked more than once
- We next show that each vertex is marked at least once.
- Let $v \neq s$ be a vertex and let $s \rightarrow \cdots \rightarrow u \rightarrow v$ be the path from s to v with the minimum number of edges. (Since the graph is connected such a path always exists)
- If the algorithm marks u, then it must put (u, v) in the bag, so it must later take (u, v) out of the bag, at which point v must be marked
- Thus by induction on the shortest-path distance from *s*, the algorithm marks every vertex in the graph

• Call an edge (v, parent(v)) with $parent(v) \neq nil$ a parent edge

- It now remains to be shown that the parent edges form a spanning tree of the graph
- For any node v, the path of parent edges $v \rightarrow parent(v) \rightarrow parent(v)$ $parent(parent(v)) \rightarrow \cdots$ eventually leads back to s, so the set of parent edges form a connected graph.
- Since every node except s has a unique parent edge, the total number of parent edges is exactly one less than the total number of vertices
- Thus the parent edges form a spanning tree (we'll show this in the in-class exercise)

DFS and BFS _____

___ Analysis _____

- If we implement the "bag" by using a stack, we have *Depth First Search*
- If we implement the "bag" by using a queue, we have *Breadth First Search*

- Note that if we use adjacency lists for the graph, the overhead for the "for" loop is only a constant per edge (no matter how we implement the bag)
- If we implement the bag using either stacks or queues, each operation on the bag takes constant time
- Hence the overall runtime is O(|V| + |E|) = O(|E|)

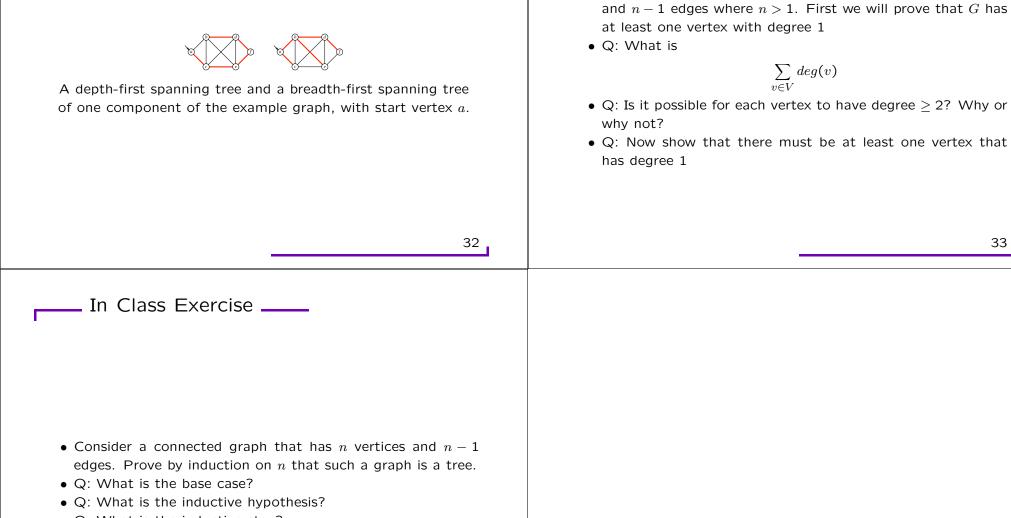
28	29
DFS vs BFS	Final Note
 Note that DFS trees tend to be long and skinny while BFS trees are short and fat In addition, the BFS tree contains <i>shortest paths</i> from the start vertex <i>s</i> to every other vertex in its connected component. (here we define the length of a path to be the number of edges in the path) 	 Now assume the edges are weighted If we implement the "bag" using a priority queue, always extracting the minimum weight edge from the bag, then we have a version of Prim's algorithm Each extraction from the "bag" now takes O(E) time so the total running time is O(V + E log E)

In Class Exercise

• Consider a connected graph G = (V, E) that has n vertices

33

Example _____



• Q: What is the inductive step?