Today's Outline ——

—
CS 362, Lecture 2 e L'Hopital’s Rule
! e Log Facts
! 4 Sai e Recurrence Relation Review
are aia .
. . . e Recursion Tree Method
University of New Mexico o Master Method

L'Hopital ——— Example ——

— —

e Q: Which grows faster Inn or \/n?
e Let f(n) =Inn and g(n) =+/n
e Then f/(n) =1/n and ¢'(n) = (1/2)n"1/2
For any functions f(n) and g(n) which approach infinity and are e SO we have:
differentiable, L'Hopital tells us that: nn 1/n
lim —— = lim —————7> (D)
o) £y S
. n) __ n
* Moo gty = MMn—co yr(ug = Jlim o ()
—Xn
=0 (3)

Thus y/n grows faster than Inn and so Inn = O(y/n)

A digression on 109S —— Definition ——

I_ I_

It rolls down stairs alone or in pairs,

and over your neighbor’s dog,

it’s great for a snack or to put on your back,

it's log, log, log!

- “The Log Song"” from the Ren and Stimpy Show e log, vy is by definition the value z such that 2 =y

e z!9929¥ = y by definition

e The log function shows up very frequently in algorithm anal-
ySis

e As computer scientists, when we use log, we'll mean logp
(i.e. if no base is given, assume base 2)

Examples —— Examples ——
— p — p
e logl=0
e log2=1 e l0g39 =2
e l0g32=5 e logs 125 =3
e log2k =k e l0gs16 =2
e 1095424100 =100

Note: logn is way, way smaller than n for large values of n

Facts about exponents ———— Facts about 109S —

I_ I_

To prove both equations, raise both sides to the power of 2, and
use facts about exponents

Recall that:

o (2¥)* = z¥*

o pVp? — gtz e Fact 1: log(zy) = logzx + logy

e Fact 2: loga® =cloga

From these, we can derive some facts about logs A
Memorize these two facts

Incredibly useful fact about logs —— Log facts to memorize ——

— —

e Fact 1: log(zy) = logz + logy
e Fact 3: log.a =1loga/logc e Fact 2: loga®=cloga

e Fact 3: log.a =loga/logec

To prove this, consider the equation a = c'ogc“, take log, of both
sides, and use Fact 2. Memorize this fact These facts are sufficient for all your logarithm needs. (You just
need to figure out how to use them)

10I 11I

Logs and O notation ——— Take Away ——

I_ I_
e Note that loggn = logn/log 8. e All log functions of form k; log, k3*nk4 for constants k1, ko,
e Note that loggpgn299 = 200 * logn/ log 600. k3 and k4 are O(logn)
e Note that 109100000 30%n2 = 2xlog n/log 100000+1og 30/ 1og 100000 e For this reason, we don’t really “care” about the base of the
e Thus, loggn, 10gego 899, and 109100000 30%n2 are all O(logn) log function when we do asymptotic notation
e In general, for any constants k1 and kp, Iogk.1 nk2 = korlogn/log ki, e Thus, binary search, ternary search and k-ary search all take
which is just O(logn) O(logn) time

12 13

Important Note — In-Class Exercise ——

— —

Simplify and give O notation for the following functions. In the

2. 2
log”n = (logn) big-O notation, write all logs base 2:

log2n is O(log2n), not O(logn)
This is true since log2n grows asymptotically faster than

2
logn e log10n
. ko k [] IOg2n4
e All log functions of form kq Iogk3 ka4 *n"5 for constants kq, ko, Slogan
4
k3,ka and kg are O(logk2 °
3.,ka 5 (log"2n) e 109 l0g \/ii

14 15

S Recurrences and Inequalities — - Inequalities (II) ———

Goal: Prove by induction that for f(n) = f(n —1) + f(n — 2),
f)=f2)=1, f(n) <27

e Base case: f(1)=1<21 f(2)=1<22
e Inductive hypothesis: for all j < n, f(j) <27
e Inductive step:

e Often easier to prove that a recurrence is no more than some
quantity than to prove that it equals something
e Consider: f(n) =f(n—-1)+ f(n—-2), f(1)=f(2)=1

o "Guess” that f(n) < 2" f(n) = fn—1)+ f(n—2) 4)
< 2ntt42n? (5)
< 2x2n71 (6)
= 2" (7)
16 | 17
Recursion-tree method — R rsion-tree meth —_—
L — Recursio tree method
e Each node represents the cost of a single subproblem in a e Used to get a good guess which is then refined and verified
recursive call using substitution method
e First, we sum the costs of the nodes in each level of the tree e Best method (usually) for recurrences where a term like
e Then, we sum the costs of all of the levels T'(n/c) appears on the right hand side of the equality

18I 19|

—— Example 1 ——

e Consider the recurrence for the running time of Mergesort:
T(n) = 2T(n/2) +n, T(1) = O(1)

N /\

n/4 n/a n
SN / \ n/Z \ n
- S S . G, S (AN

20

—— Example 1 ——

We can see that each level of the tree sums to n

Further the depth of the tree is logn (n/2d =1 implies that
d=logn).

Thus there are logn + 1 levels each of which sums to n
Hence T'(n) = ©(nlogn)

21

— Example 2 —

e Let's solve the recurrence T'(n) = 3T(n/4) + n2

e Note: For simplicity, from now on, we'll assume that T'(i) =
©(1) for all small constants . This will save us from writing
the base cases each time.

m2 M2

/ ‘ \ (316)m2

(Va2 42 a2

T NN

(16y°2 (n/16)"2 (nllG)"Z (v16y2 (”’16)“2 (16y2 (n1gy2 (VIE'2 (162

N NN AN N

22|

— Example 2 —

e We can see that the i-th level of the tree sums to (3/16)n2.

e Further the depth of the tree is logan (n/4d = 1 implies that
d =logan)

e So we can see that T'(n) = ¥,2%"™(3/16)in2

23I

Solution Master Theorem —

| - I_
logan ' e Divide and conquer algorithms often give us running-time
T(n) = Y (3/16)n? (8) recurrences of the form
i=0
S . T(n) =aT(n/b)+ f(n 12
< 23316) (n) = aT(n/b) + f(n) (12)
i=0 e Where a and b are constants and f(n) is some other function.
— ;nZ (10) e The so-called “Master Method" gives us a general method
1-(3/16) for solving such recurrences when f(n) is a simple polynomial.
= 0(n?) (11)
24 25
Master Theorem Master Theorem
| I | I

e Unfortunately, the Master Theorem doesn’t work for all func-
tions f(n)

e Further many useful recurrences don't look like T'(n)

e However, the theorem allows for very fast solution of recur-
rences when it applies

e Master Theorem is just a special case of the use of recursion
trees

e Consider equation T'(n) = aT(n/b) + f(n)

e We start by drawing a recursion tree

26I 27|

—— The Recursion Tree ——

e The root contains the value f(n)

e It has a children, each of which contains the value f(n/b)

e Each of these nodes has a children, containing the value
f(n/b?) , ,

e In general, level ¢ contains a* nodes with values f(n/b")

e Hence the sum of the nodes at the i-th level is a’f(n/b")

Details ——

e The tree stops when we get to the base case for the recur-
rence

e We'll assume T'(1) = f(1) = ©(1) is the base case

e Thus the depth of the tree is logyn and there are logyn + 1
levels

28 | 29 |
Recursion Tree A “Log Fact” Aside —
—— Rec — g
e Let T(n) be the sum of all values stored in all levels of the e It's not hard to see that a!°9%" = plo%a
tree: alogbn — nlogba (13)
T(n) = f(n)+a f(n/b)+a® f(n/b*)+- - -+a' f(n/b)+ - +a" f(n/b") aloN™ = glo%amrlogya (14)
e Where L = logn is the depth of the tree logyn = loggn *10g,a (15)
e Since f(1) = ©(1), the last term of this summation is ©(a’) = e We get to the last eqn by taking log, of both sides
©(a'°% ™) = ©(n'°%) e The last eqn is true by our third basic log fact
30 | 31

—— Master Theorem — —— Master Method ——

The recurrence T(n) = aT'(n/b) + f(n) can be solved as follows:

e We can now state the Master Theorem

o We will state it in a way slightly different from the book ¢ I(;af(n/b) < Kf(n) for some constant K <1, then T(n) =

e Note: The Master Method is just a ‘“short cut” for the re- If (f(n))é) > K . tant K 1 th T .

cursion tree method. It is less powerful than recursion trees. * @(ajlco(éz/a)) 2 K f(n) for some constan > en T(n) =
n .

o If a f(n/b) = f(n), then T (n) = O(f(n)logyn).

32 | 33

— Proof —— — Example ——

e If f(n) is a constant factor larger than a f(n/b), then the sum
is a descending geometric series. The sum of any geometric
series is a constant times its largest term. In this case, the

largest term is the first term f(n). e T(n)=T{Bn/4)+n

e If f(n) is a constant factor smaller than a f(n/b), then the e If we write this as T'(n) = aT'(n/b) + f(n), then a = 1,b =
sum is an ascending geometric series. The sum of any ge- 4/3,f(n) =n
ometric series is a constant times its largest term. In this e Here a f(n/b) = 3n/4 is smaller than f(n) = n by a factor of
case, this is the last term, which by our earlier argument is 4/3, so T(n) = ©(n)
@(nlogba)'

e Finally, if a f(n/b) = f(n), then each of the L 4+ 1 terms in
the summation is equal to f(n).

34 35 |

Example
—— Example — P
e Karatsuba's multiplication algorithm: T(n) = 3T (n/2) +
n e Mergesort: T'(n) =2T(n/2) +n
e If we write this as T'(n) = aT'(n/b) + f(n), then a = 3,b = o If we write this as T'(n) = aT'(n/b) + f(n), then a = 2,b =
2,f(n) =n 2,f(n) =n
e Here a f(n/b) = 3n/2 is bigger than f(n) = n by a factor of e Here a f(n/b) = f(n), so T(n) = ©(nlogn)
3/2, so T(n) = ©(n'°923)
36 | 37
In-ClI Exerci
L Example — Class ercise
e T(n) =T(n/2)+nlogn e Consider the recurrence: T'(n) = 4T (n/2) + nlgn
e If we write this as T'(n) = aT'(n/b) + f(n), then a = 1,b = e Q: What is f(n) and a f(n/b)?
2,f(n) =nlogn e Q: Which of the three cases does the recurrence fall under
e Here a f(n/b) = n/2logn/2 is smaller than f(n) = nlogn by (when n is large)?
a constant factor, so T(n) = ©(nlogn) e QQ: What is the solution to this recurrence?
38 | 39,

—— In-Class Exercise — —— Take Away —

e Recursion tree and Master method are good tools for solving
Consider the recurrence: T'(n) = 2T (n/4) + nlgn many recurrences
Q: What is f(n) and a f(n/b)? e However these methods are limited (they can’t help us get
e Q: Which of the three cases does the recurrence fall under guesses for recurrences like f(n) = f(n—1) + f(n —2))
(when n is large)? e For info on how to solve these other more difficult recur-
Q: What is the solution to this recurrence? rences, review the notes on annihilators on the class web
page.

e Read Chapter 3 and 4 in the text
e \Work on Homework 1

42I

