—— Today's Outline ——

CS 362, Lecture 22

e Intro to P,NP, and NP-Hardness
Jared Saia

University of New Mexico

— Efficient Algorithms — — NP-Hard Problems
e QQ: How to determine those problems which can be solved in
e Q: What is a minimum requirement for an algorithm to be polynomial time and those which can not
efficient? e Again a long time ago, Steve Cook and Dick Karp and others
e A: A long time ago, theoretical computer scientists decided defined the class of NP-hard problems
that a minimum requirement of any efficient algorithm is that e Most people believe that NP-Hard problems cannot be solved
it runs in polynomial time: O(n¢) for some constant c in polynomial time, even though so far nobody has proven a
e People soon recognized that not all problems can be solved super-polynomial lower bound.
in polynomial time but they had a hard time figuring out e What we do know is that if any NP-Hard problem can be
exactly which ones could and which ones couldn’t solved in polynomial time, they all can be solved in polyno-

mial time.

Circuit Satisfiability — Circuit Satisfiability —

I_ I_

e Circuit satisfiability is a good example of a problem that e The input to the circuit is a set of m boolean (true/false)
we don't know how to solve in polynomial time values z1,...zm
e In this problem, the input is a boolean circuit: a collection e The output of the circuit is a single boolean value
of and, or, and not gates connected by wires e Given specific input values, we can calculate the output in
e We'll assume there are no loops in the circuit (so no delay polynomial time using depth-first search and evaluating the
lines or flip-flops) output of each gate in constant time
4 5

Circuit Satisfiability —— Example ——

— —

x x _
XAy xvy x —‘>o— x
¥y ¥y

e The circuit satisfiability problem asks, given a circuit, whether An and gate, an or gate, and a not gate.
there is an input that makes the circuit output True

e In other words, does the circuit always output false for any
collenction of inputs

e Nobody knows how to solve this problem faster than just

trying all 2™ possible inputs to the circuit but this requires PR
exponential time X
e On the other hand nobody has every proven that this is the s [>o
best we can do! A boolean circuit. Inputs enter from the left, and the output

leaves to the right.

—— Classes of Problems ——

We can characterize many problems into three classes:

e P is the set of yes/no problems that can be solved in poly-
nomial time. Intuitively P is the set of problems that can be
solved “quickly”

e NP is the set of yes/no problems with the following property:
If the answer is yes, then there is a proof of this fact that
can be checked in polynomial time

e CO-NP is the set of yes/no problems with the following prop-
erty: If the answer is no, then there is a proof of this fact
that can be checked in polynomial time

NP ——

e NP is the set of yes/no problems with the following property:
If the answer is yes, then there is a proof of this fact that
can be checked in polynomial time

e Intuitively NP is the set of problems where we can verify a
Yes answer quickly if we have a solution in front of us

e For example, circuit satisfiability is in NP since if the answer
is yes, then any set of m input values that produces the True
output is a proof of this fact (and we can check this proof
in polynomial time)

— P,NP, and co-NP ——

e If a problem is in P, then it is also in NP — to verify that
the answer is yes in polynomial time, we can just throw away
the proof and recompute the answer from scratch

e Similarly, any problem in P is also in co-NP

e In this sense, problems in P can only be easier than problems
in NP and co-NP

10I

. Examples —

e The problem: “For a certain circuit and a set of inputs, is
the output True?” is in P (and in NP and co-NP)

e The problem: "“Does a certain circuit have an input that
makes the output True?” is in NP

e The problem: “Does a certain circuit always have output
true for any input?” is in co-NP

11

—

P ExampleS ——

Most problems we've seen in this class so far are in P including:

“Does there exist a path of distance <d from u to v in the
graph G?"

“Does there exist a minimum spanning tree for a graph G
that has cost < ¢?”

“Does there exist an alignment of strings s; and s, which
has cost < ¢?”

12

—— NP ExampleS ——

There are also several problems that are in NP (but probably not
in P) including:

e Circuit Satisfiability

e Coloring: “Can we color the vertices of a graph G with ¢
colors such that every edge has two different colors at its
endpoints (G and c are inputs to the problem)

e Clique: “Is there a clique of size k in a graph G?" (G and k
are inputs to the problem)

¢ Hamiltonian Path: "Does there exist a path for a graph G
that visits every vertex exactly once?”

13

—

The $1 Million Question —

The most important question in computer science (and one
of the most important in mathematics) is: “Does P=NP7?"
Nobody knows.

Intuitively, it seems obvious that P#ANP; in this class you've
seen that some problems can be very difficult to solve, even
though the solutions are obvious once you see them

But nobody has proven that PANP

14I

— NP and co-NP ——

e Notice that the definition of NP (and co-NP) is not symmet-
ric.

e Just because we can verify every yes answer quickly doesn’t
mean that we can check no answers quickly

e For example, as far as we know, there is no short proof that
a boolean circuit is not satisfiable

e In other words, we know that Circuit Satisfiability is in NP
but we don’'t know if its in co-NP

15I

Conjectures —— NP-Hard ——

I_ I_

e A problem I is NP-hard if a polynomial-time algorithm for
M would imply a polynomial-time algorithm for every problem
in NP

e In other words: 1II is NP-hard iff If II can be solved in
polynomial time, then P=NP

e In other words: if we can solve one particular NP-hard prob-
lem quickly, then we can quickly solve any problem whose
solution is quick to check (using the solution to that one

@ special problem as a subroutine)

e If you tell your boss that a problem is NP-hard, it's like saying:
“Not only can't I find an efficient solution to this problem
but neither can all these other very famous people.” (you
could then seek to find an approximation algorithm for your
problem)

e We conjecture that PANP and that NP#co-NP
e Here's a picture of what we think the world looks like:

16 17

NP-Complete —— Example ——

— —

e A problem is NP-Easy if it is in NP
e A problem is NP-Complete if it is NP-Hard and NP-Easy NP-hard
e In other words, a problem is NP-Complete if it is in NP but

is at least as hard as all other problems in NP. Q

e If anyone finds a polynomial-time algorithm for even one NP-
complete problem, then that would imply a polynomial-time @ NP-complete
algorithm for every NP-Complete problem

e T housands of problems have been shown to be NP-Complete,
so a polynomial-time algorithm for one (i.e. all) of them is

A more detailed picture of what we think the world looks like.
incredibly unlikely

18 19 |

o Proving NP-Hardness — SAT —

Consider the formula satisfiability problem (aka SAT)
The input to SAT is a boolean formula like

e In 1971, Steve Cook proved the following theorem: Circuit
Satisfiability is NP-Hard

e Thus, one way to show that a problem A is NP-Hard is to
show that if you can solve it in polynomial time, then you can
solve the Circuit Satisfiability problem in polynomial time.

(avbvevd) e ((bAS)V(a=d)V(c#EaAnd)),

The question is whether it is possible to assign boolean values

e This is called a reduction. We say that we reduce Circuit to the variables a,b,c,... so that the formula evaluates to
Satisfiability to problem A TRUE
e This implies that problem A is “as difficult as” Circuit Sat- e To show that SAT is NP-Hard, we need to show that we can
isfiability. use a solution to SAT to solve Circuit Satisfiability
20 | 21
The Reduction —— Example ——
— — P

e Given a boolean circuit, we can transform it into a boolean
formula by creating new output variables for each gate and
then just writing down the list of gates separated by AND

e This simple algorithm is the reduction

e For example, we can transform the example ciruit into a (i =z1A24)A(y2 =T2) A(y3 = 23 Ay2) A(ya = y1 Va2) A

formula as follows: (ys = 72) A (ye = T5) A(y7 = y3Vys) A(ys = yaAyr Aye) Ays

A boolean circuit with gate variables added, and an equivalent
boolean formula.

22 23 |

—— Reduction Picture —7 — —— Reduction ———

e The original circuit is satisifiable iff the resulting formula is
satisfiable

e \We can transform any boolean circuit into a formula in linear
time using DFS and the size of the resulting formula is only

N ﬂ SAT a constant factor larger than the size of the circuit

‘True or False ‘M‘ True or False‘ e Thus we've shown that if we had a polynomial-time algorithm
for SAT, then we'd have a polynomial-time algorithm for
Circuit Satisfiability (and this would imply that P=NP)

e This means that SAT is NP-Hard

O(n)
‘ boolean circuit ‘—>‘ boolean formula ‘

24 25

Showing NP-Completeness — Take Away —

— —

e We've shown that SAT is NP-Hard, to show that it is NP-
Complete, we now must also show that it is in NP

e In other words, we must show that if the given formula is
satisfiable, then there is a proof of this fact that can be
checked in polynomial time

e To prove that a boolean formula is satisfiable, we only have
to specify an assignment to the variables that makes the
formula true (this is the “proof” that the formula is true)

e Given this assignment, we can check it in linear time just by
reading the formula from left to right, evaluating as we go

e So we've shown that SAT is NP-Hard and that SAT is in NP,
thus SAT is NP-Complete

e In general to show a problem is NP-Complete, we first show
that it is in NP and then show that it is NP-Hard

e To show that a problem is in NP, we just show that when
the problem has a “yes” answer, there is a proof of this fact
that can be checked in polynomial time (this is usually easy)

e To show that a problem is NP-Hard, we show that if we
could solve it in polynomial time, then we could solve some
other NP-Hard problem in polynomial time (this is called a
reduction)

26 27 |

3-SAT —— 3-SAT ——

e A boolean formula is in conjunctive normal form (CNF) if it
is a conjunction (and) of several clauses, each of which is
the disjunction (or) or several literals, each of which is either

a variable or its negation. For example: e 3-SAT is just a restricted version of SAT

e Surprisingly, 3-SAT also turns out to be NP-Complete (proof
omitted for now)

e 3-SAT is very useful in proving NP-Hardness results for other

e A 3CNF formula is a CNF formula with exactly three literals problems, we'll see how it can be used to show that CLIQUE

per clause is NP-Hard
e The 3-SAT problem is just: “Is there any assignment of

variables to a 3CNF formula that makes the formula evaluate

clause
D e SN — —
(a\/b\/c\/d) /\(b\/E\/d)A((_z\/c\/d)A(a\/b)

to true?”
28 | 29
CLIQUE —— The Reduction —
| I Q | I
e The last problem we'll consider in this lecture is CLIQUE
e The problem CLIQUE asks “Is there a clique of size k in a
graph G?" e Given a 3-CNF formula F', we construct a graph G as follows.
e Example graph with clique of size 4: e The graph has one node for each instance of each literal in
the formula
e Two nodes are connected by an edge is: (1) they correspond
@ to literals in different clauses and (2) those literals do not

contradict each other
e We'll show that Clique is NP-Hard using a reduction from
3-SAT. (the proof that Clique is in NP is left as an exercise)

30 | 31 |

—— Reduction Examplée —— —— Reduction —

e Let F have k clauses. Then G has a clique of size k iff F' has
a satisfying assignment. The proof:

e k-clique —> satisfying assignment: If the graph has
a cligue of k vertices, then each vertex must come from a
different clause. To get the satisfying assignment, we declare

a b that each literal in the clique is true. Since we only connect

non-contradictory literals with edges, this declaration assigns

e Let F be the formula: (aVvbVve)A(bvevd)A(aVvevd)A(aVvbVd)
e This formula is transformed into the following graph:

0 G . .
a consistent value to several of the variables. There may be
7 & variables that have no literal in the clique; we can set these
to any value we like.
a c d

e satisfying assignment — k-clique: If we have a satisfy-
ing assignment, then we can choose one literal in each clause

look for th hat aren’t in th raph
(look for the edges that aren't in the graph) that is true. Those literals form a k-clique in the graph.

32 33

L Reduction Picture —— — L In-Class Exercise —_

Consider the formula: (aVb) A (bVeE) A (cVb)

O(n)
3CNF formula with k& clauses‘—>‘graph with 3k nodes‘

e Q1: Transform this formula into a graph, G, using the re-
trivial duction just given.
True or Fa'se‘ ‘Tr“e or Fa'se‘ e Q2: What is the maximum clique size in G? Give the vertices

in this maximum clique.

ﬂ Clique of size k7

34I 35I

