Today's Outline

6

Lookup Table ____

- The last example implies that an annihilator annihilates one type of sequence, but does not annihilate other types of sequences
- Thus Annihilators can help us classify sequences, and thereby solve recurrences

• The annihilator $L - a$ annihilates any sequence of the form $\langle c_1 a^n \rangle$

In Class Exercise

Multiple Operators _______

Consider the recurrence $T(n) = 3 * T(n - 1)$, $T(0) = 3$,

- Q1: Calculate $T(0)$, $T(1)$, $T(2)$ and $T(3)$ and write out the sequence T
- $Q2$: Calculate LT , and use it to compute the annihilator of T
- Q3: Look up this annihilator in the lookup table to get the general solution of the recurrence for $T(n)$
- Q4: Now use the base case $T(0) = 3$ to solve for the constants in the general solution
- We can apply multiple operators to a sequence
- For example, we can multiply by the constant c and then by the constant d to get the operator cd
- We can also multiply by c and then shift left to get cLT which is the same as LcT
- We can also shift the sequence twice to the left to get LLT which we'll write in shorthand as L^2T

Key Point

Lookup Table ______

- In general, the annihilator $(L a)(L b)$ (where $a \neq b$) will anihilate only all sequences of the form $\langle c_1a^n+c_2b^n\rangle$
- We will often multiply out $(L-a)(L-b)$ to $L^2-(a+b)L+ab$
- Left as an exercise to show that $(L a)(L b)T$ is the same as $(L^2 - (a + b)L + ab)T$
- The annihilator L $-a$ annihilates sequences of the form $\langle c_1a^n\rangle$
- The annihilator $(L a)(L b)$ (where $a \neq b$) anihilates sequences of the form $\langle c_1 a^n + c_2 b^n \rangle$

Quadratic Formula

Example

"Me fail English? That's Unpossible!" - Ralph, the Simpsons

High School Algebra Review:

- To factor something of the form $ax^2 + bx + c$, we use the Quadratic Formula:
- $ax^2 + bx + c$ factors into $(x \phi)(x \hat{\phi})$, where:

$$
\phi = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \tag{4}
$$

$$
\hat{\phi} = \frac{-b - \sqrt{b^2 - 4ac}}{2a} \tag{5}
$$

• To factor: $L^2 - L - 1$ • Rewrite: $1 * L^2 - 1 * L - 1$, $a = 1$, $b = -1$, $c = -1$

- Rewrite: 1*L⁻ 1*L 1, $a = 1$, $b = -1$, $c = -1$
• From Quadratic Formula: $\phi = \frac{1+\sqrt{5}}{2}$ and $\hat{\phi} = \frac{1-\sqrt{5}}{2}$
• So L² L 1 factors to $(L \phi)(L \hat{\phi})$
-
-

Back to Fibonnaci

- Recall the Fibonnaci recurrence is $T(0) = 0$, $T(1) = 1$, and $T(n) = T(n-1) + T(n-2)$
- We've shown the annihilator for T is $(L \phi)(L \hat{\phi})$, where we ve shown the annumated
 $\phi = \frac{1+\sqrt{5}}{2}$ and $\hat{\phi} = \frac{1-\sqrt{5}}{2}$
- If we look this up in the "Lookup Table", we see that the sequence T must be of the form $\langle c_1\phi^n+c_2\widehat{\phi}^n\rangle$
- All we have left to do is solve for the constants c_1 and c_2
- Can use the base cases to solve for these

Finding the Constants

• We know $T = \langle c_1 \phi^n + c_2 \hat{\phi}^n \rangle$, where $\phi = \frac{1+\sqrt{5}}{2}$ and $\hat{\phi} = \frac{1-\sqrt{5}}{2}$ • We know

$$
T(0) = c_1 + c_2 = 0 \tag{6}
$$

$$
T(1) = c_1 \phi + c_2 \hat{\phi} = 1 \tag{7}
$$

- We've got two equations and two unknowns
- Can solve to get $c_1 = \frac{1}{\sqrt{5}}$ $\frac{1}{\sqrt{5}}$ and $c_2=-\frac{1}{\sqrt{5}}\frac{1}{\sqrt{5}}$ _
5'

24

A Problem

- Recall Fibonnaci recurrence: $T(0) = 0$, $T(1) = 1$, and $T(n) = 1$ $T(n-1) + T(n-2)$
- The final explicit formula for $T(n)$ is thus:

$$
T(n) = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^n
$$

(Amazingly, $T(n)$ is always an integer, in spite of all of the square roots in its formula.)

- Our lookup table has a big gap: What does $(L a)(L a)$ annihilate?
- It turns out it annihilates sequences such as $\langle na^n \rangle$

