
CS 362, Lecture 6

Jared Saia

University of New Mexico

Today’s Outline

• String Alignment

• Matrix Multiplication

1

Example II

• Unfortunately, it can be more difficult to compute the edit

distance exactly. Example:

A L G O R I T H M
A L T R U I S T I C

2

Key Observation

• If we remove the last column in an optimal alignment, the

remaining alignment must also be optimal

• Easy to prove by contradiction: Assume there is some better

subalignment of all but the last column. Then we can just

paste the last column onto this better subalignment to get

a better overall alignment.

• Note: The last column can be either: 1) a blank on top

aligned with a character on bottom, 2) a character on top

aligned with a blank on bottom or 3) a character on top

aligned with a character on bottom

3



DP Solution

• To develop a DP algorithm for this problem, we first need to

find a recursive definition

• Assume we have a m length string A and an n length string

B

• Let E(i, j) be the edit distance between the first i characters

of A and the first j characters of B

• Then what we want to find is E(n, m)

4

Recursive Definition

• Say we want to compute E(i, j) for some i and j

• Further say that the “Recursion Fairy” can tell us the solu-

tion to E(i′, j′), for all i′ ≤ i, j′ ≤ j, except for i′ = i and

j′ = j

• Q: Can we compute E(i, j) efficiently with help from the our

fairy friend?

5

Recursive Definition

There are three possible cases:

• Insertion: E(i, j) = 1 + E(i, j − 1)

• Deletion: E(i, j) = 1 + E(i− 1, j)

• Substitution: If ai = bj, E(i, j) = E(i−1, j−1), else E(i, j) =

E(i− 1, j − 1) + 1

6

Summary

Let I(A[i] 6= B[j]) = 1 if A[i] and B[j] are different, and 0 if they

are the same. Then:

E(i, j) = min


E(i, j − 1) + 1,
E(i− 1, j) + 1,
E(i− 1, j − 1) + I(A[i] 6= B[j])



7



Base Case(s)

It’s not too hard to see that:

• E(0, j) = j for all j, since the j characters of B must be

aligned with blanks

• Similarly, E(i,0) = i for all i

8

Recursive Alg

• We now have enough info to directly create a recursive al-

gorithm

• The run time of this recursive algorithm would be given by

the following recurrence:

T (m,0) = T (0, n) = O(1), T (m, n) = T (m, n−1)+T (m−1, n)+T (n−1, m−1)+O(1).

• T (n, n) = Θ(1 +
√

2n), which is terribly, terribly slow.

9

Better Idea

• We can build up a m × n table which contains all values of

E(i, j)

• We start by filling in the base cases for this table: the entries

in the 0-th row and 0-th column

• To fill in any other entry, we need to know the values directly

above, to the left and above and to the left.

• Thus we can fill in the table in the standard way: left to

right and top down to ensure that the entries we need to fill

in each cell are always available

10

A L G O R I T H M
0 →1→2→3→4→5→6→7→8→ 9
↓ ↘↘↘↘↘↘↘↘↘

A 1 0→1→2→3→4→5→6→7→ 8
↓ ↓↘↘↘↘↘↘↘↘↘

L 2 1 0→1→2→3→4→5→6→ 7
↓ ↓ ↓↘ ↘ ↘ ↘ ↘↘↘↘↘↘↘↘↘

T 3 2 1 1→2→3→4 4→5→ 6
↓ ↓ ↓↘↓↘ ↘↘↘↘↘↘↘↘↘ ↘ ↘

R 4 3 2 2 2 2→3→4→5→ 6
↓ ↓ ↓↘↓↘ ↓↘↓↘ ↘ ↘ ↘

U 5 4 3 3 3 3 3→4→5→ 6
↓ ↓ ↓↘↓↘ ↓↘↓↘↘↘↘↘↘↘↘↘ ↘ ↘ ↘

I 6 5 4 4 4 4 3→4→5→ 6
↓ ↓ ↓↘↓↘ ↓↘↓ ↓↘ ↘ ↘

S 7 6 5 5 5 5 4 4 5 6
↓ ↓ ↓↘↓↘ ↓↘↓ ↓↘↘↘↘↘↘↘↘↘ ↘ ↘

T 8 7 6 6 6 6 5 4→5→ 6
↓ ↓ ↓↘↓↘ ↓↘↓ ↓ ↓↘ ↘

I 9 8 7 7 7 7 6 5 5→ 6
↓ ↓ ↓↘↓↘ ↓↘↓ ↓ ↓↘↓↘

C 10 9 8 8 8 8 7 6 6 6



The code

EditDistance(A[1,..,m],B[1,..,n]){

for (i=1;i<=m;i++){

Edit[i,0] = i;}

for (j=1;j<=n;j++){

Edit[0,j] = j;}

for (i=1;i<=m;i++){

for (j=1;j<=n;j++){

if (A[i]==B[j]){

Edit[i,j] = min(Edit[i,j-1]+1,

Edit[i-1,j]+1,

Edit[i-1,j-1]);

}else{

Edit[i,j] = min(Edit[i,j-1]+1,

Edit[i-1,j]+1;

Edit[i-1,j-1]+1);

}}}

return Edit[m,n];}

11

Reconstructing an optimal alignment

• In this code, we do not keep info around to reconstruct the

optimal alignment

• However, it is a simple matter to keep around another array

which stores, for each cell, a pointer to the cell that was used

to achieve the current cell’s minimum edit distance

• To reconstruct a solution, we then need only follow these

pointers from the bottom right corner up to the top left

corner

12

In Class Exercise

• Create a string alignment table for the two strings “abba”

and “bab”. Put “abba” at the top of the table and “bab”

on the left side

• Qi: (i = 1,2, . . . ,5) What is the i-th row of your table

• Q6: What is the minimum edit distance and how many align-

ments achieve it?

13

Take Away

• To solve the string alignment problem, we did the following:

1) formulated the problem recursively 2) built a solution to

the recurrence from the bottom up

• Next we’ll see how a similar technique can be used to solve

the matrix multiplication problem.

14



Matrix Chain Multiplication

Problem:

• We are given a sequence of n matrices, A1, A2, . . . , An, where

for i = 1,2, . . . , n, matrix Ai has dimension pi−1 by pi

• We want to compute the product, A1A2, . . . , An as quickly as

possible.

• In particular, we want to fully paranthesize the expression

above so there are no ambiguities about the how the matrices

are multiplied

• A product of matrices is fully parenthisized if it is either a

single matrix, or the product of two fully parenthesized matrix

products, sorrounded by parantheses

15

Paranthesizing Matrices

• There are many ways to paranthesize the matrices

• Each way gives the same output (because of associativity of

matrix multiplications)

• However the way we paranthesize will effect the time to com-

pute the output

• Our Goal: Find a paranthesization which requires the mini-

mal number of scalar multiplications

16

Example

• In this example, it’s much better to multiply the last two

matrices first (this gives us a short, narrow matrix on the

right)

• Worse to multiply the first two matrices first (this gives us a

short wide matrix on the left)

• In general, our goal is to find ways to always create narrow

and short resulting matrices.

17

A Problem

Problem: There can be many ways to paranthesize. E.g.

• (A1(A2(A3A4)))

• (A1((A2A3)A4))

• ((A1A2)(A3A4))

• ((A1(A2A3))A4)

• (((A1A2)A3)A4)

18



A Problem

• Let P (n) be the number of ways to paranthesize n matrices.

Then P (1) = 1

• For n ≥ 2, we know that a fully paranthesized product is the

product of two fully paranthesized products, and the split

can occur anywhere from k = 1 to k = n− 1.

• Hence for n ≥ 2:

P (n) =
n−1∑
k=1

P (k)P (n− k)

• In the hw, you will show that the solution to this recurrence

is Ω(2n)

19

The Pattern

Q: Can we develop a DP Solution to this problem?

• Formulate the problem recursively.. Write down a formula

for the whole problem as a simple combination of answers to

smaller subproblems

• Build solutions to your recurrence from the bottom up.

Write an algorithm that starts with the base cases of your

recurrence and works its way up to the final solution by con-

sidering the intermediate subproblems in the correct order.

20

Key Observation

• Let Ai..j (for i ≤ j) be the matrix that results from evaluating

the product AiAi+1, . . . Aj

• Note that if i < j, then for some value of k, i ≤ k < j, we

must first compute Ai..k and Ak+1..j, and then multiply them

together to get Ai..j

• The cost of this particular parenthesization is then the cost

of computing Ai..k plus the cost of computing Ak+1..j plus

cost of multiplying Ai..k by Ak+1..j

21

The Cost

• Ai..k is a pi−1 by pk matrix

• Ak+1..j is a pk by pj matrix

• Thus multiplying Ai..k and Ak+1..j takes pi−1pkpj operations

22



Recursive Formulation

• Let m(i, j) be the minimum cost of computing Ai,j

• We’ve shown that m(i, j) ≤ m(i, k) + m(k + 1, j) + pi−1pkpj

for any k = i, i + 1, . . . , j − 1

• Further note that the optimal parenthesization must use

some value of k = i, i+1, . . . , j−1. So we need only pick the

best

23

Recursive Formulation

• m(i, j) = 0 if i = j

• m(i, j) = mini≤k<j{m(i, k) + m(k + 1, j) + pi−1pkpj}

24

The Recursive Solution

• We now have enough information to write a recursive func-

tion to solve the problem

• The recursive solution will have runtime given by the follow-

ing recurrence:

• T (1) = 1,

• T (n) = 1 +
∑n−1

k=1(T (k) + T (n− k) + 1)

• Unfortunately, the solution to this recurrence is Ω(2n) (as

shown on p. 346 of the text)

25

DP Solution

• Note that we must solve one subproblem for each choice of

i and j satisfying 1 ≤ i ≤ j ≤ n

• This is only
(
n
2

)
+ n = Θ(n2) subproblems

• The recursive algorithm encounters each subproblem many

times in the branches of the recursion tree.

• However, we can just compute these subproblems from the

bottom up, storing the results in a table (this is the DP

solution)

26



Example

• Consider the sequence of three matrices, A1, A2, A3 whose

dimensions are given by the sequence 3,1,2,1,2

• Let’s construct the tables giving the optimal parenthesization

• The (i, j) entry of the first table will give the optimal cost

for computing Ai..j, the (i, j) entry of the second table will

give a k value which achieves this optimal cost

27

Example

1 2 3 4
1 0 6 5 10
2 - 0 2 4
3 - - 0 4
4 - - - 0

28

Example

1 2 3 4
1 - 1 1 1
2 - - 2 3
3 - - - 3
4 - - - -

29

Optimal Parenthesization

• Thus an optimal parenthesization is (A1((A2A3)A4))

30


