
University of New Mexico
Department of Computer Science

Midterm Examination
CS 362 Data Structures and Algorithms

Spring, 2007

Name:

Email:

• Print your name and email, neatly in the space provided above; print your name at the upper
right corner of every page. Please print legibly.

• This is an closed book exam. You are permitted to use only two pages of “cheat sheets” that
you have brought to the exam and a calculator. Nothing else is permitted.

• Do all five problems in this booklet. Show your work! You will not get partial credit if we
cannot figure out how you arrived at your answer.

• Write your answers in the space provided for the corresponding problem. Let us know if you
need more paper.

• Don’t spend too much time on any single problem. The questions are weighted equally. If
you get stuck, move on to something else and come back later.

• If any question is unclear, ask us for clarification.

Question Points Score Grader

1 20

2 20

3 20

4 20

5 20

Total 100



1. Short Answer

Multiple Choice:

The following choices will be used for the multiple choice problems.

(a) Θ(1)

(b) Θ(log∗ n)

(c) Θ(log n)

(d) Θ(
√

n)

(e) Θ(n)

(f) Θ(n log n)

(g) Θ(n2)

(h) Θ(n3)

(i) Θ(2n)

For each of the questions below, choose one of the above possible answers. Please write the
letter of your chosen answer to the left of the question.

(a) Time to find the optimal way to parenthesize a list of n matrices so that the number of
scalar multiplications to compute their produce is minimized

(b) Amortized cost of a call to Find-Set using the union-find data structure over n elements
with union by tree size (smaller tree under larger tree) but without path compression.

(c) Solution to the recurrence T (n) = 4T (n/2) + log n

(d) Solution to the recurrence T (n) = 2T (n− 1) + 1

(e) Solution to the recurrence T (n) = 3T (n− 1)− 2T (n− 2) + 1

True or False (10 points total). Circle your final answers.

(a) If an operation takes O(1) amortized time, then it takes O(1) worst case time.

(b) Any problem that can be solved with a greedy algorithm can also be solved with dynamic
programming

(c) log n is o(
√

n)

(d) log n is ω(1)

(e) A dynamic programming algorithm always uses some type of recurrence relation.



2. Amortized Analysis

Consider a linked list that has the following operations defined on it:

• AddLast(x): Adds the element x to the end of the list

• RemoveFourths(): Removes every fourth element in the list i.e. removes the first, fifth,
ninth, etc., elements of the list.

Assume these operations have the following costs:

• AddLast(x) - cost equals 1

• RemoveFourths() - cost equals the number of elements in the list

(a) Assume we perform n operations on the list. What is the worst case run time of a call
to RemoveFourths? Justify your answer.

(b) Now you will show that the amortized cost of these two operations is small using the
taxation (accounting) method.

i. First give the amount that you will charge AddLast() and the amount that you will
charge RemoveFourths().

ii. Next show how you will use these charges to pay for the actual costs of these oper-
ations.

iii. Finally write down the amortized cost per operation.



3. Knapsack

Suppose you have a collection of n items i1, i2, ..., in with weights w1, w2, ..., wn and a bag
with capacity W .

Part 1: Describe a simple, efficient algorithm to select as many items as possible to fit inside
the bag e.g. the maximum cardinality set of items that have weights that sum to at most W

Part 2: Give a concise and rigorous argument that your algorithm is correct.



4. Dynamic Programming

Recall that in the 0-1 Knapsack problem, we are given two things. First a list of n items
(v1, w1), (v2, w2)...(vn, wn), where item i has value vi and weight wi. Second a weight W which
is the maximum weight that can be carried in the knapsack. The items are indivisible so that
we must either place the entire item in the knapsack or not place it in the knapsack. Our
goal is to maximize the sum of the values of all the items that are placed in the knapsack.

Part 1: Professor Clyde claims that a greedy algorithm will solve this problem. Is he correct?
(Just answer yes or no, you do not need to justify your answer)

Consider the following Dynamic Programming approach to the problem. For integers i
and j, let f(i, j) be the maximum value that can be achieved if only items from the set
(v1, w1), (v2, w2)...(vi, wi) are allowed and the backpack can only carry a total weight of j.
Note that for all j > 0, f(0, j) = 0 and for all i > 0, f(i, 0) = 0.

Part 2: Let n = 2, W = 3 and the list of items be (2, 2), (1, 1)). Your first job is to fill in the
three missing entries in this table.

i= 0 i=1 i=2

j=0 0 0 0

j=1 0 0

j=2 0 2

j=3 0 2

Part 3: Note that if wi > j then f(i, j) = f(i− 1, j). Now write down the recurrence relation
for f(i, w) for the case where wi ≤ j. Hint: f(i, j) will be the maximum over two quantities
- it will depend on wi, vi and on previously computed values of the function f .



Part 4: Briefly explain how you would use the above recurrence relation to write a dynamic
program to solve the 0-1 knapsack problem. How large would your table be? What value of
f would you return to as the maximum value that can be fit in the knapsack? What is the
run time of your dynamic program?



5. Recurrences

Consider the following puzzle. There is a row of n chairs and two types of people: M for
mathematicians and P for poets. You want to assign one person to each seat but you can
never seat two mathematicians together or they will start talking about mathematics and
everyone else in the room will get bored. For example, if n = 3, the following are some valid
seatings: PPP, MPM, and PPM. However, the following is an invalid seating: MMP.

In this problem, your goal is as follows. Let f(n) be the number of valid seatings when there
are n chairs in a row. Write and solve a recurrence relation for f(n). Please show your work.


