
CS 362, HW4

Prof. Jared Saia, University of New Mexico

1. Your boss asks you to decide which of two algorithms to use in a
new software system. The runtimes of the two algorithms are given
by the following recurrences (remember that when the base case of a
recurrence is not given, assume T (c) = Θ(1) for any constant c):

• Algorithm 1: T (n) = 5T (n/2) + n

• Algorithm 2: T (n) = 3T (n/2) + n2

Which algorithm has the better asymptotic cost? Justify your answer
by solving both recurrences (using recursion trees) and comparing the
solutions.

2. A frog is jumping across a line of lily pads. It starts at lily pad 1.
When the frog is at lily pad i for any i ≥ 1, it jumps to lily pad i+ 1
with probability 1/2 and to lily pad i+ 2 with probability 1/2.

(a) Let p(i) be the probability that the frog ever visits lily pad i, for
any i ≥ 1. Write a recurrence relation for p(i). Don’t forget the
base case(s).

(b) Use annihilators to solve for a general solution to your recurrence
relation.

(c) Use the base case(s) of your recurrence to solve for an exact so-
lution.

(d) Now, let X be a random variable giving the number of lily pads
between lily pad 1 and n that the frog visits, for some fixed num-
ber n. Compute E(X) by using: linearity of expectation, indi-
cator random variables, and your solution to the recurrence p(i)
that you found above.

3. Silly-Sort Consider the following sorting algorithm

1



Silly-Sort(A,i,j)

if A[i] > A[j]

then exchange A[i] and A[j];

if i+1 >= j

then return;

k = floor((j-i+1)/3);

Silly-Sort(A,i,j-k);

Silly-Sort(A,i+k,j);

Silly-Sort(A,i,j-k);

(a) Argue (by induction) that if n is the length of A, then Silly-
Sort(A,1,n) correctly sorts the input array A[1...n]

(b) Give a recurrence relation for the worst-case run time of Silly-Sort
and a tight bound on the worst-case run time

(c) Compare this worst-case runtime with that of insertion sort, merge
sort and quicksort.

4. Note: In this problem, you’ll be writing - but not solving - a recurrence
relation over a data structure. When we get to dynamic programming
in class, we’ll see how to solve these types of recurrences.

Consider a rooted binary tree with nodes are labelled as follows. The
root node is labelled with the empty string. Then, any node that is a
left child of a node with name σ receives the name σL and any node
that is the right child of that node receives the name σR.

Give a recurrence relation returning the number of R’s in all labels of
all nodes. For example, the following tree has 10 R’s.

L

LL

LLL

R

RLR

RRRL

RRRLLR

Hint: For a node v, let f(v) be the number of R’s in the tree rooted
at v, if the naming started at v. Also, let ℓ(v) (resp. r(v)) be the left

2



(resp. right) child of v if it exists or NULL otherwise. Finally, let s(v)
be the number of nodes in the subtree rooted at v and assume this
value is stored at each node. Now write a recurrence relation for f(v).
Don’t forget to include the base case and to test it on some examples.

3


