
CS 362, HW 8

Prof. Jared Saia, University of New Mexico

1. Do Problem 4 on the midterm. Also, use your recurrence relation to
fill in a table for the input cost array [2, 1, 5, 8, 6, 2].

2. Do Problem 5 on the midterm. Also, use your recurrence relation to
fill in a table for initial input (2, 2, 2) of pile sizes. Your table should
be 3 dimensional so please describe it via 2-D slices. For example if
your recurrence is f(x, y, z). Then give the three 2-D tables f(0, y, z),
f(1, y, z) and f(2, y, z), for all values y and z. Can the first player
force a win if the piles are of sizes (2, 2, 2)?

3. Consider the following alternative greedy algorithms for the activity
selection problem discussed in class. For each algorithm, either prove
or disprove that it constructs an optimal schedule.

(a) Choose an activity with shortest duration, discard all conflicting
activities and recurse

(b) Choose an activity that starts first, discard all conflicting activi-
ties and recurse

(c) Choose an activity that ends latest, discard all conflicting activ-
ities and recurse

(d) Choose an activity that conflicts with the fewest other activities,
discard all conflicting activities and recurse

4. Now consider a weighted version of the activity selection problem.
Imagine that each activity, ai has a weight, w(ai), and weights are
totally unrelated to activity duration. Your goal is now to choose a
set of non-conflicting activities that give you the largest possible sum
of weights, given an array of start times, end times, and values as
input.

(a) Prove that the greedy algorithm described in class - Choose the
activity that ends first and recurse - does not always return an
optimal schedule for this problem

1



(b) Describe an algorithm to compute the optimal schedule in O(n2)
time. Hint: 1) Sort the activities by finish times. 2) Let m(j)
be the maximum weight achievable from activities a1, a2, . . . , aj .
3) Come up with a recurrence relation for m(j) and use dynamic
programming. Hint 2: In the recursion in step 3, it’ll help if you
precompute for each job j, the value xj which is the largest index
i less than j such that job i is compatible with job j. Then when
computing m(j), consider that the optimal schedule could either
include job j or not include job j.

2


