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Amortized Analysis

“I will gladly pay you Tuesday for a hamburger today” - Welling-

ton Wimpy

• In amortized analysis, time required to perform a sequence of

data structure operations is averaged over all the operations

performed

• Typically used to show that the average cost of an operation

is small for a sequence of operations, even though a single

operation can cost a lot
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Amortized analysis

Amortized analysis is not average case analysis.

• Average Case Analysis: the expected cost of each operation

• Amortized analysis: the average cost of each operation in

the worst case

• Probability is not involved in amortized analysis
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Types of Amortized Analysis

• Aggregate Analysis

• Accounting or Taxation Method

• Potential method

• We’ll see each method used for 1) a stack with the additional

operation MULTIPOP and 2) a binary counter

• Amortized analysis assumes the data structure starts in the

initialized state (e.g. empty stack, binary counter at 0, etc)
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Aggregate Analysis

• We get an upperbound T (n) on the total cost of a sequence

of n operations. The average cost per operation is then

T (n)/n, which is also the amortized cost per operation
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Stack with Multipop

• Recall that a standard stack has the operations PUSH and

POP

• Each of these operations runs in O(1) time, so let’s say the

cost of each is 1

• Now for a stack S and number k, let’s add the operation

MULTIPOP which removes the top k objects on the stack

• Multipop just calls Pop either k times or until the stack is

empty
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Multipop

• Q: What is the running time of Multipop(S,k) on a stack of

s objects?

• A: The cost is min(s,k) pop operations

• If there are n stack operations, in the worst case, a single

Multipop can take O(n) time
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Multipop Analysis

• Let’s analyze a sequence of n push, pop, and multipop op-

erations on an initially empty stack

• The worst case cost of a multipop operation is O(n) since

the stack size is at most n, so the worst case time for any

operation is O(n)

• Hence a sequence of n operations costs O(n2)
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The Problem

• This analysis is technically correct, but overly pessimistic

• While some of the multipop operations can take O(n) time,

not all of them can

• We need some way to average over the entire sequence of n

operations
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Aggregate Analysis

• In fact, the total cost of n operations on an initially empty

stack is O(n)

• Why? Because each object can be popped at most once for

each time that it is pushed

• Hence the number of times POP (including calls within Mul-

tipop) can be called on a nonempty stack is at most the

number of Push operations which is O(n)
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Aggregate Analysis

• Hence for any value of n, any sequence of n Push, Pop, and

Multipop operations on an initially empty stack takes O(n)

time

• The average cost of an operation is thus O(n)/n = O(1)

• Thus all stack operations have an amortized cost of O(1)
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Another Example

Another example where we can use aggregate analysis:

• Consider the problem of creating a k bit binary counter that

counts upward from 0

• We use an array A[0..k − 1] of bits as the counter

• A binary number x that is stored in A has its lowest-order bit

in A[0] and highest order bit in A[k− 1] (x =
󰁓k−1

i=0 A[i] ∗ 2i)
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Binary Counter

• Initially x = 0 so A[i] = 0 for all i = 0,1, . . . , k − 1

• To add 1 to the counter, we use a simple procedure which

scans the bits from right to left, zeroing out 1’s until it finally

find a zero bit which it flips to a 1
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Increment

Increment(A){

i = 0;

while(i<k && A[i]=1){

A[i] = 0;

i++;

}

if (i<k)

A[i] = 1;

}
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Analysis

• It’s not hard to see that in the worst case, the increment

procedure takes time Θ(k)

• Thus a sequence of n increments takes time O(nk) in the

worst case

• Note that again this bound is correct but overly pessimistic

- not all bits flip each time increment is called!
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Aggregate Analysis

• In fact, we can show that a sequence of n calls to Increment

has a worst case time of O(n)

• A[0] flips every time Increment is called, A[1] flips over every

other time, A[2] flips over every fourth time, . . .

• Thus if there are n calls to increment, A[0] flips n times, A[1]

flips ⌊n/2⌋ times, A[2] flips ⌊n/4⌋ times
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Aggregate Analysis

• In general, for i = 0, . . . ⌊logn⌋, bit A[i] flips
󰁭
n/2i

󰁮
times in a

sequence of n calls to Increment on an initially zero counter

• For i > ⌊logn⌋, bit A[i] never flips

• Total number of flips in the sequence of n calls is thus

⌊logn⌋󰁛

i=0

󰀙
n

2i

󰀚
< n

∞󰁛

i=0

1

2i
(1)

= 2n (2)
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Aggregate Analysis

• Thus the worst-case time for a sequence of n Increment

operations on an initially empty counter is O(n)

• The average cost of each operation in the worst case then

is O(n)/n = O(1)
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Accounting or Taxation Method

• The second method is called the accounting method in the

book, but a better name might be the taxation method

• Suppose it costs us a dollar to do a Push or Pop

• We can then measure the run time of our algorithm in dollars

(Time is money!)
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Taxation Method for Multipop

• Instead of paying for each Push and Pop operation when they

occur, let’s tax the pushes to pay for the pops

• I.e. we tax the push operation 2 dollars, and the pop and

multipop operations 0 dollars

• Then each time we do a push, we spend one dollar of the

tax to pay for the push and then save the other dollar of the

tax to pay for the inevitable pop or multipop of that item

• Note that if we do n operations, the total amount of taxes

we collect is then 2n
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Taxation Method

• Like any good government (ha ha) we need to make sure

that: 1) our taxes are low and 2) we can use our taxes to

pay for all our costs

• We already know that our taxes for n operations are no more

than 2n dollars

• We now want to show that we can use the 2 dollars we collect

for each push to pay for all the push, pop and multipop

operations
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Taxation Method

• This is easy to show. When we do a push, we use 1 dollar

of the tax to pay for the push and then store the extra dollar

with the item that was just pushed on the stack

• Then all items on the stack will have one dollar stored with

them

• Whenever we do a Pop, we can use the dollar stored with

the item popped to pay for the cost of that Pop

• Moreover, whenever we do a Multipop, for each item that

we pop off in the Multipop, we can use the dollar stored with

that item to pay for the cost of popping that item
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Taxation Method

• We’ve shown that we can use the 2 tax on each item pushed

to pay for the cost of all pops, pushes and multipops.

• Moreover we know that this taxation scheme collects at most

2n dollars in taxes over n stack operations

• Hence we’ve shown that the amortized cost per operation is

O(1)
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Taxation Method for Binary Counter

• Let’s now use the taxation method to show that the amor-

tized cost of the Increment algorithm is O(1)

• Let’s say that it costs us 1 dollar to flip a bit

• What is a good taxation scheme to ensure that we can pay

for the costs of all flips but that we keep taxes low?
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Taxation Scheme

• Let’s tax the algorithm 2 dollars to set a bit to 1

• Now we need to show that: 1) this scheme has low total

taxes and 2) we will collect enough taxes to pay for all of

the bit flips

• Showing overall taxes are low is easy: Each time Increment

is called, it sets at most one bit to a 1

• So we collect exactly 2 dollars in taxes each time increment

is called

• Thus over n calls to Increment, we collect 2n dollars in taxes
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Taxation Scheme

• We now need to show that our taxation scheme has enough

money to pay for the costs of all operations

• This is easy: Each time we set a bit to a 1, we collect 2

dollars in tax. We use one dollar to pay for the cost of

setting the bit to a 1, then we store the extra dollar on that

bit

• When the bit gets flipped back from a 1 to a 0, we use the

dollar already on that bit to pay for the cost of the flip!
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Binary Counter

• We’ve shown that we can use the 2 tax each time a bit is

set to a 1 to pay for all operations which flip a bit

• Moreover we know that this taxation scheme collects 2n dol-

lars in taxes over n calls to Increment

• Hence we’ve shown that the amortized cost per call to In-

crement is O(1)
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In Class Exercise

• A sequence of Pushes and Pops is performed on a stack

whose size never exceeds k

• After every k operations, a copy of the entire stack is made

for backup purposes

• Show that the cost of n stack operations, including copying

the stack, is O(n)

28



Exercise

• A sequence of Pushes and Pops is performed on a stack

whose size never exceeds k

• After every k operations, a copy of the entire stack is made

for backup purposes

• Show that the cost of n stack operations, including copying

the stack, is O(n)
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Exercise

• Q1: What is your taxation scheme?

• Q2: What is the maximum amount of taxes this scheme

collects over n operations?

• Q3: Show that your taxation scheme can pay for the costs

of all operations
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Potential Method

• The most powerful method (and hardest to use)

• Builds on the idea from physics of potential energy

• Instead of associating taxes with particular operations, rep-

resent prepaid work as a potential that can be spent on later

operations

• Potential is a function of the entire data structure
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Potential Function

• Let Di denote our data structure after i operations

• Let Φi denote the potential of Di

• Let ci denote the cost of the i-th operation (this changes

Di−1 into Di)

• Then the amortized cost of the i-th operation, ai, is defined

to be the actual cost plus the change in potential:

ai = ci +Φi −Φi−1
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Potential Method

• So the total amortized cost of n operations is the actual cost

plus the change in potential:

n󰁛

i=1

ai =
n󰁛

i=1

󰀃
ci +Φi −Φi−1

󰀄
=

n󰁛

i=1

ci +Φn −Φ0.
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Potential Method

• Our task is to define a potential function so that

1. Φ0 = 0

2. Φi ≥ 0 for all i

• If we do this, the total actual cost of any sequence of oper-

ations will be less than the total amortized cost
n󰁛

i=1

ci =
n󰁛

i=1

ai −Φn ≤
n󰁛

i=1

ai.
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Binary Counter Example

• For the binary counter, we can define the potential Φi after

the i-th Increment operation to be the number of bits with

value 1

• Initially all bits are 0 so Φ0 = 0, further Φi ≥ 0 for all i > 0,

so this is a legal potential function
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Binary Counter

• We can describe both the actual cost of an Increment and

the change in potential in terms of the number of bits set to

1 and reset to 0.

ci = #bits flipped from 0 to 1+#bits flipped 1 to 0

Φi −Φi−1 = #bits flipped from 0 to 1−#bits flipped 1 to 0

• Thus, the amortized cost of the ith Increment is

ai = ci +Φi −Φi−1 = 2×#bits flipped from 0 to 1
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Binary Counter

• Since Increment only changes one bit from a 0 to a 1, the

amortized cost of Increment is 2 (using this potential func-

tion)

• Recall that for a legal potential function,
󰁓n

i=1 ci ≤
󰁓n

i=1 ai
thus the total cost for n call to increment is no more than

2n

• (Same as saying that the amortized cost is 2)
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Potential Method Recipe

1. Define a potential function for the data structure that is 1)

initially equal to zero and 2) is always nonnegative.

2. The amortized cost of an operation is its actual cost plus

the change in potential.
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Binary Counter Example

• For the binary counter, the potential was exactly the total

unspent taxes paid using the taxation method

• So it gave us the same amortized bound

• In general, however, there may be no way of interpreting the

potential as “taxes”
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A Good Potential Function

• Different potential functions lead to different amortized time

bounds

• Trick to using the method is to get the best possible potential

function

• A good potential function goes up a little during any cheap/fast

operation and goes down a lot during any expensive/slow op-

eration

• Unfortunately, there’s no general technique for doing this

other than trying lots of possibilities
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Stack Example

• Consider again a stack with Multipop

• Define the potential function Φ on the stack to be the num-

ber of objects on the stack

• This potential function is “legal” since Φ0 = 0 and Φi ≥ 0

for all i > 0
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Push

• Let’s now compute the costs of the different stack operations

on a stack with s items

• If the i-th operation on the stack is a push operation on a

stack containing s objects, then

Φi −Φi−1 = (s+1)− s = 1

• So ai = ci +1 = 2
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Multipop

• Let the i-th operation be Multipop(S,k) and let k′ = min(k, s)

be the number of objects popped off the stack. Then

Φi −Φi−1 = (s− k′)− s = −k′.

• Further ci = k′.
• Thus,

ai = −k′ + k′ = 0

• (We can show similarly that the amortized cost of a pop

operation is 0)
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Wrapup

• The amortized cost of each of these three operations is O(1)

• Thus the worst case cost of n operations is O(n)
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Dynamic Tables

• Consider the situation where we do not know in advance the

number of items that will be stored in a table, but we want

constant time access

• We might allocate a fixed amount of space for the table only

to find out later that this was not enough space

• In this case, we need to copy over all objects stored in the

original table into a new larger table

• Similarly, if many objects are deleted, we might want to re-

duce the size of the table

45



Dynamic Tables

• The data structure that we want is a Dynamic Table (aka

Dynamic Array)

• We can show using amortized analysis that the amortized

cost of an insertion and deletion into a Dynamic Table is

O(1) even though worst case cost may be much larger
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Load Factor

• For a nonempty table T , we define the “load factor” of T ,

α(T ), to be the number of items stored in the table divided

by the size (number of slots) of the table

• We assign an empty table (one with no items) size 0 and

load factor of 1

• Note that the load factor of any table is always between 0

and 1

• Further if we can say that the load factor of a table is always

at least some constant c, then the unused space in the table

is never more than 1− c
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Table Expansion

• Assume that the table is allocated as an array

• A table is full when all slots are used i.e. when the load factor

is 1

• When an insert occurs when the table is full, we need to

expand the table

• The way we will do this is to allocate an array which is twice

the size of the old array and then copy all the elements of

the old array into this new larger array

• If only insertions are performed, this ensures that the load

factor is always at least 1/2
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Pseudocode

Table-Insert(T,x){

if (T.size == 0){allocate T with 1 slot;T.size=1}

if (T.num == T.size){

allocate newTable with 2*T.size slots;

insert all items in T.table into newTable;

T.table = newTable;

T.size = 2*T.size

}

T.table[T.num] = x;

T.num++

}
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Amortized Analysis

• Note that usually Table-Insert just does an “elementary” in-

sert into the array

• However very occasionally it will do an “expansion”. We will

say that the cost of an expansion is equal to the size before

the expansio occurs

• (This is the cost of moving over all the old elements to the

larger table)
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Aggregate Analysis

• Let ci be the cost of the i-th call to Table-Insert.

• If i − 1 is an exact power of 2, then we’ll need to do an

expansion and so ci = i

• Otherwise, ci = 1

• The total cost of n Table-Insert operations is thus

n󰁛

i=1

ci ≤ n+
⌊logn⌋󰁛

j=0

2j

< n+2⌊logn⌋+1

= n+2 · 2⌊logn⌋

≤ n+2n

= 3n

• Thus the amortized cost of a single operation is 3
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Taxation method

• Every time Table-Insert is called, we tax the operation 3

dollars

• Intuitively, the item inserted pays for:

1. its insertion

2. moving itself when the table is eventually expanded

3. moving some other item that has already been moved

once when the table is expanded
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Taxation Method

• Suppose that the size of the table is m right after an expan-

sion

• Then the number of items in the table is m/2

• Each time Table-Insert is called, we tax the operation 3 dol-

lars:

1. One dollar is used immediately to pay for the elementary

insert

2. Another dollar is stored with the item that is inserted

3. The third dollar is placed as credit on one of the m/2

items already in the table
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Taxation Method

• Filling the table again requires m/2 total calls to Table-Insert

• Thus by the time the table is full and we do another expan-

sion, each item will have one dollar of credit on it

• This dollar of credit can be used to pay for the movement

of that item during the expansion
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Potential Method

• Let’s now analyze Table-Insert using the potential method

• Let numi be the num value for the i-th call to Table-Insert

• Let sizei be the size value for the i-th call to Table-Insert

• Then let

Φi = 2 ∗ numi − sizei
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In Class Exercise

Recall that ai = ci +Φi −Φi−1

• Show that this potential function is 0 initially and always

nonnegative

• Compute ai for the case where Table-Insert does not trigger

an expansion

• Compute ai for the case where Table-Insert does trigger an

expansion (note that numi−1 = numi−1, sizei−1 = numi−1,

sizei = 2 ∗ (numi − 1))
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Table Delete

• We’ve shown that a Table-Insert has O(1) amortized cost

• To implement Table-Delete, it is enough to remove (or zero

out) the specified item from the table

• However it is also desirable to contract the table when the

load factor gets too small

• Storage for old table can then be freed to the heap
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Desirable Properties

We want to preserve two properties:

• the load factor of the dynamic table is lower bounded by

some constant

• the amortized cost of a table operation is bounded above by

a constant
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Naive Strategy

• A natural strategy for expansion and contraction is to double

table size when an item is inserted into a full table and halve

the size when a deletion would cause the table to become

less than half full

• This strategy guarantees that load factor of table never drops

below 1/2
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D’Oh

• Unfortunately this strategy can cause amortized cost of an

operation to be large

• Assume we perform n operations where n is a power of 2

• The first n/2 operations are insertions

• At the end of this, T.num = T.size = n/2

• Now the remaining n/2 operations are as follows:

I,D,D, I, I,D,D, I, I, . . .

where I represents an insertion and D represents a deletion
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Analysis

• Note that the first insertion causes an expansion

• The two following deletions cause a contraction

• The next two insertions cause an expansion again, etc., etc.

• The cost of each expansion and deletion is Θ(n) and there

are Θ(n) of them

• Thus the total cost of n operations is Θ(n2) and so the

amortized cost per operation is Θ(n)
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The Solution

• The Problem: After an expansion, we don’t perform enough

deletions to pay for the contraction (and vice versa)

• The Solution: We allow the load factor to drop below 1/2

• In particular, halve the table size when a deletion causes the

table to be less than 1/4 full

• We can now create a potential function to show that Inser-

tion and Deletion are fast in an amortized sense
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Recall: Load Factor

• For a nonempty table T , we define the “load factor” of T ,

α(T ), to be the number of items stored in the table divided

by the size (number of slots) of the table

• We assign an empty table (one with no items) size 0 and

load factor of 1

• Note that the load factor of any table is always between 0

and 1

• Further if we can say that the load factor of a table is always

at least some constant c, then the unused space in the table

is never more than 1− c
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The Potential

Φ(t) =

󰀫
2 ∗ T.num− T.size if α(T ) ≥ 1/2
T.size/2− T.num if α(T ) < 1/2

󰀬

• Note that this potential is legal since Φ(0) = 0 and (you can

prove that) Φ(i) ≥ 0 for all i
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Intuition

• Note that when α = 1/2, the potential is 0

• When the load factor is 1 (T.size = T.num), Φ(T ) = T.num,

so the potential can pay for an expansion

• When the load factor is 1/4, T.size = 4∗T.num, which means

Φ(T ) = T.num, so the potential can pay for a contraction if

an item is deleted
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Analysis

• Let’s now roll up our sleeves and show that the amortized

costs of insertions and deletions are small

• We’ll do this by case analysis

• Let numi be the number of items in the table after the i-th

operation, sizei be the size of the table after the i-th opera-

tion, and αi denote the load factor after the i-th operation
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Table Insert

• If αi−1 ≥ 1/2, analysis is identical to the analysis done in the

In-Class Exercise - amortized cost per operation is 3

• If αi−1 < 1/2, the table will not expand as a result of the

operation

• There are two subcases when αi−1 < 1/2: 1) αi < 1/2 2)

αi ≥ 1/2
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Case: αi < 1/2

• In this case, we have

ai = ci +Φi −Φi−1

= 1+ (sizei/2− numi)− (sizei−1/2− numi−1)

= 1+ (sizei/2− numi)− (sizei/2− (numi − 1))

= 0
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Case: αi ≥ 1/2

ai = ci +Φi −Φi−1

= 1+ (2 ∗ numi − sizei)− (sizei−1/2− numi−1)

= 1+ (2 ∗ (numi−1 +1)− sizei−1)− (sizei−1/2− numi−1)

= 3 ∗ numi−1 −
3

2
sizei−1 +3

= 3 ∗ αi−1 ∗ sizei−1 −
3

2
sizei−1 +3

<
3

2
∗ sizei−1 −

3

2
sizei−1 +3

= 3
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Take Away

• So we’ve just show that in all cases, the amortized cost of

an insertion is 3

• We did this by case analysis

• What remains to be shown is that the amortized cost of

deletion is small

• We’ll also do this by case analysis
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Deletions

• For deletions, numi = numi−1 − 1

• We will look at two main cases: 1) αi−1 < 1/2 and 2) αi−1 ≥
1/2

• For the case where αi−1 < 1/2, there are two subcases: 1a)

the i-th operation does not cause a contraction and 1b) the

i-th operation does cause a contraction
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Case: no contraction

• If αi−1 < 1/2 and the i-th operation does not cause a con-

traction, we know sizei = sizei−1 and we have:

ai = ci +Φi −Φi−1

= 1+ (sizei/2− numi)− (sizei−1/2− numi−1)

= 1+ (sizei/2− numi)− (sizei/2− (numi +1))

= 2
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Case: Contraction

• In this case, αi−1 < 1/2 and the i-th operation causes a

contraction.

• We know that: ci = numi +1 and

sizei/2 = sizei−1/4 = numi−1 = numi +1

• Thus we have:

ai = ci +Φi −Φi−1

= (numi +1)+ (sizei/2− numi)− (sizei−1/2− numi−1)

= (numi +1)+ ((numi +1)− numi)− ((2numi +2)− (numi +1))

= 1
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Case: Deletion and αi−1 ≥ 1/2

• In this case, αi−1 ≥ 1/2

• Proving that the amortized cost is constant for this case is

left as an exercise to the diligent student

• Hint1: Q: In this case is it possible for the i-th operation to

be a contraction? If so, when can this occur? Hint2: Try a

case analysis on αi.
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Take Away

• Since we’ve shown that the amortized cost of every operation

is at most a constant, we’ve shown that any sequence of n

operations on a Dynamic table take O(n) time

• Note that in our scheme, the load factor never drops below

1/4

• This means that we also never have more than 3/4 of the

table that is just empty space
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Union-Find

• Union-Find is our last application of amortized analysis

• A union-find data structure maintains a collection {S1, S2, . . . Sk}
of disjoint dynamic sets

• Each set is identified by a representative which is a member

of that set
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Operations

Union-find supports the following three operations:

• Make-Set(x): creates a new set whose only member (and

representative) is x

• Union(x,y): unites the sets that contain x and y (call them

Sx and Sy) into a new set that is Sx ∪ Sy. The new set is

added to the data structure while Sx and Sy are deleted. The

representative of the new set is any member of the set.

• Find-Set(x): Returns a pointer to the representative of the

(unique) set containing x
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Analysis

• We will analyze this data structure in terms of two parame-

ters:

1. n, the number of Make-Set operations

2. m, the total number of Make-Set, Union, and Find-Set

operations

• Since the sets are always disjoint, each Union operation re-

duces the number of sets by 1

• So after n− 1 Union operations, only one set remains

• Thus the number of Union operations is at most n− 1

78



Discussion

• Note also that since the Make-Set operations are included in

the total number of operations, we know that m ≥ n

• We will in general assume that the Make-Set operations are

the first n performed
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Application

• Consider a simplified version of Facebook

• Every person is an object and every set represents a social

clique

• Whenever a person in the set S1 forges a link to a person in

the set S2, then we want to create a new larger social clique

S1 ∪ S2 (and delete S1 and S2)

• We might also want to find a representative of each set, to

make it easy to search through the set

• For obvious reasons, we want these operation of Union,

Make-Set and Find-Set to be as fast as possible
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Example

• Make-Set(“Bob”), Make-Set(“Sue”), Make-Set(“Jane”), Make-

Set(“Joe”)

• Union(“Bob”, “Joe”)

there are now three sets {Bob, Joe}, {Jane}, {Sue}
• Union(“Jane”, “Sue”)

there are now two sets {Bob, Joe}, {Jane, Sue}
• Union(“Bob”,”Jane”)

there is now one set {Bob, Joe, Jane, Sue}
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Discussion and Outline

• We can implement Union-Find with amortized cost for

all operations that is O(log∗ n). (log∗ is the iterated log

function.

• Details of this implementation and analysis are given in the

remainder of these slides.

• We will later see that Union Find is used in Kruskal’s mini-

mum spanning tree algorithm, and you’ll see an application

in the homework
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First Approach: Unbalanced Trees

• One of the easiest ways to store sets is using trees.

• Each object points to another object, called its parent, ex-

cept for the leader of each set, which points to itself and

thus is the root of the tree.
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Tree Implementation

• Make-Set is trivial (we just create one root node)

• Find-Set traverses the parent pointers up to the leader (the

root node).

• Union just redirects the parent pointer of one leader to the

other.

(Notice that unlike most tree data structures, objects do not

have pointers down to their children.)
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Algorithms

Make-Set(x){

parent(x) = x;

}

Find-Set(x){

while(x!=parent(x))

x = parent(x);

return x;

}

Union(x,y){

xParent = Find-Set(x);

yParent = Find-Set(y);

parent(yParent) = xParent;

}
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Example

Merging two sets stored as trees. Arrows point to parents. The

shaded node has a new parent.
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Analysis

• Make-Set takes Θ(1) time

• Union takes Θ(1) time in addition to the calls to Find-Set

• The running time of Find-Set is proportional to the depth of

x in the tree. In the worst case, this could be Θ(n) time
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Problem

• Problem: The running time of Find-Set is very slow

• Q: Is there some way to speed this up?

• A: Yes we can ensure that the heights of our trees remain

small

• We can do this by using the following strategy when merging

two trees: we make the root of the tree with fewer nodes a

child of the tree with more nodes

• This means that we need to always store the number of

nodes in each tree, but this is easy
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The Code

Make-Set(x){

parent(x) = x;

size(x) = 1;

}

Union(x,y){

xRep = Find-Set(x);

yRep = Find-Set(y);

if (size(xRep)) > size(yRep)){

parent(yRep) = xRep;

size(xRep) = size(xRep) + size(yRep);

}else{

parent(xRep) = yRep;

size(yRep) = size(yRep) + size(xRep);

}

}
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Analysis

• It turns out that for these algorithms, all the functions run

in O(logn) time

• We will be showing this is the case in the In-Class exercise

• We will show this by showing that the heights of all the trees

are always logarithmic in the number of nodes in the tree
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In-Class Exercise

• We will show that the height of our trees are no more than

O(logx) where x is the number of nodes in the tree

• We will show this using proof by induction on, x, the number

of nodes in the tree

• We will consider a tree with x nodes and, using the inductive

hypothesis (and facts about our algs), show that it has a

height of O(logx)
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The Facts

• Let T be a tree with x nodes that was created by a call to

the Union Algorithm

• Note that T must have been created by merging two trees

T1 and T2

• Let T2 be the tree with the smaller number of nodes

• Then the root of T is the root of T1 and a child of this root

is the root of the tree T2

• Key fact: the number of nodes in T2 is no more than x/2
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In-Class Exercise

To prove: Any tree T with x nodes, created by our algorithms,

has height no more than logx

• Q1: Show the base case (x = 1)

• Q2: What is the inductive hypothesis?

• Q3: Complete the proof by giving the inductive step. (hint:

note that height(T) = Max(height(T1),height(T2)+1)
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Problem

• Q: O(logn) per operation is not bad but can we do better?

• A: Yes we can actually do much better but it’s going to take

some cleverness (and amortized analysis)
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Shallow Threaded Trees

• One good idea is to just have every object keep a pointer to

the leader of it’s set

• In other words, each set is represented by a tree of height 1

• Then Make-Set and Find-Set are completely trivial, and they

both take O(1) time

• Q: What about the Union operation?
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Union

• To do a union, we need to set all the leader pointers of one

set to point to the leader of the other set

• To do this, we need a way to visit all the nodes in one of the

sets

• We can do this easily by “threading” a linked list through

each set starting with the sets leaders

• The threads of two sets can be merged by the Union algo-

rithm in constant time
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The Code

Make-Set(x){

leader(x) = x;

next(x) = NULL;

}

Find-Set(x){

return leader(x);

}
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The Code

Union(x,y){

xRep = Find-Set(x);

yRep = Find-Set(y);

leader(y) = xRep;

while(next(y)!=NULL){

y = next(y);

leader(y) = xRep;

}

next(y) = next(xRep);

next(xRep) = yRep;

}
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Example

Merging two sets stored as threaded trees.

Bold arrows point to leaders; lighter arrows form the threads.

Shaded nodes have a new leader.
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Analysis

• Worst case time of Union is a constant times the size of the

larger set

• So if we merge a one-element set with a n element set, the

run time can be Θ(n)

• In the worst case, it’s easy to see that n operations can take

Θ(n2) time for this alg
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Problem

• The main problem here is that in the worst case, we always

get unlucky and choose to update the leader pointers of the

larger set

• Instead let’s purposefully choose to update the leader point-

ers of the smaller set

• This will require us to keep track of the sizes of all the sets,

but this is not difficult
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The Code

Make-Weighted-Set(x){

leader(x) = x;

next(x) = NULL;

size(x) = 1;

}
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The Code

Weighted-Union(x,y){

xRep = Find-Set(x);

yRep = Find-Set(y)

if(size(xRep)>size(yRep){

Union(xRep,yRep);

size(xRep) = size(xRep) + size(yRep);

}else{

Union(yRep,xRep);

size(yRep) = size(xRep) + size(yRep);

}

}
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Analysis

• The Weighted-Union algorithm still takes Θ(n) time to merge

two n element sets

• However in an amortized sense, it is more efficient:

• A sequence of m Make-Weighted-Set operations and n Weighted-

Union operations takes O(m+n logn) time in the worst case.
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Proof

• Whenever the leader of an object x is changed by a call to

Weighted-Union, the size of the set containing x increases

by a factor of at least 2

• Thus if the leader of x has changed k times, the set contain-

ing x has at least 2k members

• After the sequence of operations ends, the largest set has at

most n members

• Thus the leader of any object x has changed at most ⌊logn⌋
times
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Proof

• Let n be the number of calls to Make-Weighted-Set and m

be the number of calls to Weighted-Union

• We’ve shown that each of the objects that are not in single-

ton sets had at most O(logn) leader changes

• Thus, the total amount of work done in updating the leader

pointers is O(n logn)
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Proof

• We’ve just shown that for n calls to Make-Weighted-Set

and m calls to Weighted-Union, that total cost for updat-

ing leader pointers is O(n logn)

• We know that other than the work needed to update these

leader pointers, each call to one of our functions does only

constant work

• Thus total amount of work is O(n logn+m)

• Thus each Weighted-Union call has amortized cost of O(logn)

Side Note: We’ve just used the aggregate method of amortized

analysis
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Analysis

• Using Balanced-Trees, Find-Set takes logarithmic worst case,

Make-Set is constant and Union is constant except for the

calls to Find-Set

• Using Shallow-Trees, Union takes logarithmic amortized time

and everything else is constant

• A third method allows us to get both of these operations in

almost constant amortized time
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Path Compression

• We start with the unthreaded tree representation (from Simple-

Union)

• Key Observation is that in any Find-Set operation, once we

get the leader of an object x, we can speed up future Find-

Set’s by redirecting x’s parent pointer directly to that leader

• We can also change the parent pointers of all ancestors of x

all the way up to the root (We’ll do this using recursion)

• This modification to Find-Set is called path compression
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Example

Path compression during Find(c). Shaded nodes have a new

parent.
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PC-Find-Set

PC-Find-Set(x){

if(x!=Parent(x)){

Parent(x) = PC-Find-Set(Parent(x));

}

return Parent(x);

}
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Rank

• For ease of analysis, instead of keeping track of the size of

each of the trees, we will keep track of the rank

• Each node will have an associated rank

• This rank will give an estimate of the log of the number of

elements in the set
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Code

PC-MakeSet(x){

parent(x) = x;

rank(x) = 0;

}

PC-Union(x,y){

xRep = PC-Find-Set(x);

yRep = PC-Find-Set(y);

if(rank(xRep) > rank(yRep))

parent(yRep) = xRep;

else{

parent(xRep) = yRep;

if(rank(xRep)==rank(yRep))

rank(yRep)++;

}

}
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Rank Facts

• If an object x is not the set leader, then the rank of x is

strictly less than the rank of its parent

• For a set X, size(X) ≥ 2rank(leader(X)) (can show using in-

duction on the size of X)

• Since there are n objects, the highest possible rank is O(logn)

• Only set leaders can change their rank
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Rank Facts

Can also say that there are at most n/2r objects with rank r.

• When the rank of a set leader x changes from r − 1 to r,

mark all nodes in its set. At least 2r nodes are marked, and

no other node with rank r will ever mark those nodes.

• There are n nodes total and any object with rank r marks 2r

of them

• Thus there can be at most n/2r objects of rank r
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Blocks

• We will also partition the objects into several numbered blocks

• x is assigned to block number log∗(rank(x))
• Recall: Intuitively, log∗ n is the number of times you need to

hit the log button on your calculator, after entering n, before

you get something less than or equal to 1

• In other words x is in block b if

2 ↑↑ (b− 1) < rank(x) ≤ 2 ↑↑ b,

where ↑↑ is defined as in the next slide
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log∗ x definition

• log∗ x is the iterated log function

log∗ x =

󰀻
󰀿

󰀽
1 if x ≤ 1

1+ log∗(logx) if x > 1
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2 ↑↑ b definition

• 2 ↑↑ b is the tower function

2 ↑↑ b = 22
2.
..
2
󰀬

b
=

󰀻
󰀿

󰀽
1 if b = 0

22↑↑(b−1) if b > 0
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Number of Blocks

• Every object has a rank between 0 and ⌊logn⌋
• So the blocks numbers range from 0 to log∗ ⌊logn⌋ = log∗(n)−

1

• Hence there are log∗ n blocks
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Number of Objects in Block b

• Since there are at most n/2r objects with any rank r, the

total number of objects in block b is at most

2↑↑b󰁛

r=2↑↑(b−1)+1

n

2r
<

∞󰁛

r=2↑↑(b−1)+1

n

2r
=

n

22↑↑(b−1)
=

n

2 ↑↑ b
.
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Theorem

• Theorem: If we use both PC-Find-Set and PC-Union (i.e.

Path Compression and Weighted Union), the worst-case run-

ning time of a sequence of m operations, n of which are

MakeSet operations, is O(m log∗ n)
• Each PC-MakeSet operation takes constant time. PC-Union

takes constant time except for calls to PC-Find-Set. Thus,

we need only show that any sequence of m PC-Find-Set

operations require O(m log∗ n) time in the worst case

• We will use a kind of accounting method to show this
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Proof

• The cost of PC-Find-Set(x0) is proportional to the number

of nodes on the path from x0 up to its leader

• Each object x0, x1, x2, . . . , xl on the path from x0 to its leader

will pay a 1 tax into one of several bank accounts

• After all the Find operations are done, the total amount of

money in these accounts will give us the total running time
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Taxation

• The leader xℓ pays into the leader account.

• The child of the leader xℓ−1 pays into the child account.

• Any other object xi in a different block from its parent xi+1

pays into the block account.

• Any other object xi in the same block as its parent xi+1 pays

into the path account.
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Example

Different nodes on the find path pay into different accounts: Red=Leader;
Green = Child; Purple = Path; Blue = Block.

Horizontal lines are boundaries between blocks. Only the nodes on the find
path are shown.
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Leader, Child and Block accounts

• During any Find operation, one dollar is paid into the leader

account

• At most one dollar is paid into the child account

• At most one dollar is paid into the block account for each of

the log∗ n blocks

• Thus when the sequence of m operations ends, these ac-

counts share a total of at most 2m+m log∗ n dollars
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Path Account

• The only remaining difficulty is the Path account

• Consider an object xi in block b that pays into the path

account

• This object is not a set leader so its rank can never change.

• The parent of xi is also not a set leader, so after path com-

pression, xi gets a new parent, xℓ, whose rank is strictly larger

than its old parent xi+1

• Since rank(parent(x)) is always increasing, parent of xi must

eventually be in a different block than xi, after which xi will

never pay into the path account

• Thus xi pays into the path account at most once for every

rank in block b, or less than 2 ↑↑ b times total
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Path Account

• Since block b contains less than n/(2 ↑↑ b) objects, and each

of these objects contributes less than 2 ↑↑ b dollars, the total

number of dollars contributed by objects in block b is less

than n dollars to the path account

• There are log∗ n blocks so the path account receives less than

n log∗ n dollars total

• Thus the total amount of money in all four accounts is less

than 2m+m lg∗ n+n lg∗ n = O(m lg∗ n), and this bounds the

total running time of the m operations.
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Take Away

• We can now say that each call to PC-Find-Set and PC-Union

has amortized cost O(log∗ n), which is significantly better

than the worst case cost of O(logn)

• The book shows that PC-Find-Set and PC-Union has amor-

tized cost of O(A−1(n)) where A−1(n) (inverse Ackerman

function) is an even slower growing function than log∗ n
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