Randomized Algorithms

Jared Saia
University of New Mexico

A Quicksort ——

Based on divide and conquer strategy
Worst case is ©(n?)

Expected running time is ©(nlogn)

An In-place sorting algorithm

Almost always the fastest sorting algorithm

A Quicksort ——

e Divide: Pick some element A[qg] of the array A and partition
A into two arrays A1 and A, such that every element in Ay
is < A[q], and every element in Ay is > A[p]

e Conquer: Recursively sort A1 and Ao

e Combine: A concatenated with A[q] concatenated with A
is now the sorted version of A

o The Algorithm ——

//PRE: A is the array to be sorted, p>=1;
// r is <= the size of A
//POST: Alp..r] is in sorted order
Quicksort (A,p,r){
if (p<r)A

q = Partition (A,p,r);

Quicksort (A,p,q-1);

Quicksort (A,q+1l,r);

Partition

—
//PRE: A[p..r] is the array to be partitioned, p>=1 and r <= size
// of A, A[r] is the pivot element
//POST: Let A’ be the array A after the function is run. Then
// A’ [p..r] contains the same elements as A[p..r]. Further,
// all elements in A’ [p..res-1] are <= A[r], A’[res] = Alr],
// and all elements in A’ [res+l..r] are > Al[r]

Partition (A,p,r){
x = Alr];
i=p-1;

for (j=p;j<=r-1;j++){
if (Aljl<=x){
1++;
exchange A[i] and A[j];
+}
exchange A[i+1] and A[r];

return i+1;

A AnalysiS ——_

e The function Partition takes O(n) time. Why?

Example QuickSort

—
e QuickSort the array [2, 6, 9, 1, 5, 3, 8, 7, 4]

o Randomized Quick-Sort —

e \WWe'd like to ensure that we get reasonably good splits rea-
sonably quickly

e Q. How do we ensure that we “usually” get good splits?
How can we ensure this even for worst case inputs?

e A: We use randomization.

— R-Partition ——

//PRE: A[p..r] is the array to be partitioned, p>=1 and r <= size
// of A
//POST: Let A’ be the array A after the function is run. Then

// A’ [p..r] contains the same elements as A[p..r]. Further,
// all elements in A’ [p..res-1] are <= A[i], A’[res] = A[i],
// and all elements in A’ [res+1..r] are > A[i], where i is
// a random number between p and r.

R-Partition (A,p,r){
i = Random(p,r);
exchange A[r] and A[i];

return Partition(A,p,r);

}

S Randomized Quicksort

//PRE: A is the array to be sorted, p>=1, and r is <= the size of A
//POST: Alp..r] is in sorted order
R-Quicksort (A,p,r){
if (p<r)A
q = R-Partition (A,p,r);
R-Quicksort (A,p,q-1);
R-Quicksort (A,qt+l,r);

AnalysiS —_

—
e R-Quicksort is a randomized algorithm
e [he run time is a random variable
e We'd like to analyze the expected run time of R-Quicksort
e To do this, we first need to learn some basic probability

theory.

10
]

A Probability Definitions —

(from Appendix C.3)

e A random variable is a variable that takes on one of several
values, each with some probability. (Example: if X is the
outcome of the roll of a die, X is a random variable)

e [he expected value of a random variable, X is defined as:

E(X) =) zPr(X =uz)
x
(Example if X is the outcome of the roll of a three sided die,

1(1/3) +2(1/3) +3(1/3)
2

E(X)

11

A Probability Definitions —

e Two events A and B are mutually exclusive if A\ B is the
empty set (Example: A is the event that the outcome of a
die is 1 and B is the event that the outcome of a die is 2)

e [Two random variables X and Y are independent if for all =
andy, P(X =z and Y =y) = P(X =2)P(Y = vy) (Example:
let X be the outcome of the first roll of a die, and Y be the
outcome of the second roll of the die. Then X and Y are
independent.)

12

A Indicator Random Variables

e An Indicator Random Variable for event A, is defined as:

1 if event A occurs

I(A) = {

e Example: Let A be the event that the roll of a die equals 2.
Then I(A) is 1 if the die roll is 2 and 0 otherwise.

0O otherwise

13
]

A Linearity of Expectation ——

e Let X and Y be two random variables
e Then E(X+Y)=E(X)+ E(Y)
e (Holds even if X and Y are not independent.)

e More generally, let X4, Xo,..., Xy be n random variables
e [hen

B (f: Xz-) — Y B(X)
1=1 =1

1=

14
]

Example ——

e For 1 < < n, let X; be the outcome of the i-th roll of
three-sided die
e [hen

1=1

1=1

15
l

Example ——

e Indicator Random Variables and Linearity of Expectation used
together are a very powerful tool

e [he Birthday Paradox illustrates this point

e [0 analyze the run time of Quicksort, we will also use indica-
tor r.v.’s and linearity of expectation (analysis will be similar
to “birthday paradox” problem)

16
]

A Birthday ParadoX —

e Assume there are m people in a room, and n days in a year

e Assume that each of these m people is born on a day chosen
independently and uniformly at random from the n days

e Q: What is the expected number of pairs of individuals that
have the same birthday?

e \We can use indicator random variables and linearity of ex-
pectation to compute this

17
]

—

AnalysiS —_

e Foralll <i:<j<m,let X;; bean indicator random variable

defined such that:
— Xz-,j = 1 if person ¢ and person 5 have the same birthday

— X; ; = 0 otherwise
e Note that for all 7,7,

E(X; ;)

P(person i and j have same birthday)
1/n

18
]

o AnalysiS —_

e Let X be a random variable giving the number of pairs of
people with the same birthday

e We want E(X)

e [hen X = Zl§i<j§mXi,j

e SO E(X) = E(X 1<i<j<m Xij)

19
l

A AnalysiS ——_

E(X)zE(> XZ-J)

1<i<j<m
= > E(X;j) LOE
1<i<i<m

= > 1/n
1<i<g<m
my 1
<2)5
m(m — 1)
2n
The second step follows by Linearity of Expectation (LOE)

20

S Reality Check ——

e Thus, if m(m —1) > 2n, expected number of pairs of people
with same birthday is at least 1

e [hus if have at least v/2n people in the room, expected
number of pairs with same birthday is at least 1.

e For n = 365, if m = 28, expected number of pairs with same
birthday is 1.04

21

o In-Class Exercise —_

e Assume there are m people in a room, and n days in a year

e Assume that each of these m people is born on a day chosen
uniformly at random from the n days

o Let X be the number of groups of three people who all have
the same birthday. What is E(X)?

o Let Xi,j,k be an indicator r.v. which is 1 if people 7,7, and k
have the same birthday and O otherwise

22

o In-Class Exercise —_

e Q1: Write the expected value of X as a function of the Xj ; .
(use linearity of expectation)

e Q2: What is E(X; ;)7

e Q3: What is the total number of groups of three people out
of m?

e Q4: What is E(X)?

23

A Plan of Attack ——

“If you get hold of the head of a snake, the rest of it is mere
rope’”’ - Akan Proverb

e \We will analyze the total number of comparisons made by
quicksort

e We will let X be the total number of comparisons made by
R-Quicksort

e We will write X as the sum of a bunch of indicator random

variables
e \We will use linearity of expectation to compute the expected

value of X

24

— Notation

e Let A be the array to be sorted
e Let z; be the -th smallest element in the array A
o Let Zz’,j = {Zia Zid-1s- - Z]}

25

A Indicator Random Variables

o Let X;; be 1if z; is compared with z; and O otherwise
e Note that X = Y723 57,11 X
e Further note that

n—1 n n—1 n
E(X)=E<Z > Xz’,j>: >, 2. E(Xy)

i=1 j=i+1 i=1 j=i+1

26

A Questions —__

e Q1: So what is E(X; ;)7

o Al: It is P(z; is compared to z;)

e Q2: What is P(z; is compared to z;)?
o A2: It is:

P(either z; or z; are the first elems in Z; ; chosen as pivots)

e \Why?

— If no element in Zi,j has been chosen yet, no two elements
in Zijj have yet been compared, and all of Zi,j IS in same
list

— If some element in Z; ; other than z; or z; is chosen first,
z; and Zj will be split into separate lists (and hence will
never be compared)

27

S More Questions —
e Q: What is

P(either z; or z; are first elems in Z; ; chosen as pivots)

e A: P(z chosen as first elem in Z; ;) +
P(z; chosen as first elem in Z; ;)
e Further note that number of elems in Zz-,j isjg—1+1, so

1
P(z; chosen as first elem in Z; ;) = —
’ j—1+1
and
. . 1
P(z; chosen as first elem in Z; ;) = —
’ Jg—1+1
e Hence
: . , 2
P(z; or z; are first elems in Z; ; chosen as pivots) = - 11
J—1

28
]

—

Conclusion

E(X; ;) = P(z is compared to z;)
2

T it

29

—

Putting it together

LOE

30

Questions

—

e Q: Why is Y7_, 2 = 0O(logn)?
o A:

<2(lInn4+1) By an integral bound (p. 1067)

31

o Markov's Inequality ——

e We've just shown that the expected runtime of randomized
QuickSort is no more than Cnlogn for some constant C.

e But what does this tell us about the probability that the
algorithm takes significantly more than that?

e TO go from expectations to probability bounds, we can use
a special inequality: Markov's inequality (next slide).

e This tells us (among other things) that the probability of tak-
ing 100 times the expected runtime is no more than 1/100.

32

o Markov's Inequality ——

Let X be a random variable that only takes on non-negative
values Then for any A > 0O:

E(X)

Pr(X >)\) <

Proof of Markov's: Assume instead that there exists a)\ such
that Pr(X > \) was actually larger than E(X)/A

But then E(X) would be at least A - Pr(X > \) > E(X), which
IS a contradiction!!!

33

?
o How Fast Can We Sort7?

e Q: What is a lowerbound on the runtime of any sorting al-
gorithm?

e We know that Q2(n) is a trivial lowerbound

e But all the algorithms we’'ve seen so far are O(nlogn) (or
0O(n?)), so is Q(nlogn) a lowerbound?

34

S Comparison Sorts —_

e Definition: An sorting algorithm is a comparison sort if the
sorted order they determine is based only on comparisons

between input elements.
e Heapsort, mergesort, quicksort, bubblesort, and insertion sort

are all comparison sorts
e We will show that any comparison sort must take Q2(nlogn)

35

S Comparisons —_

e Assume we have an input sequence A = (a1,a2,...,an)

e In a comparison sort, we only perform tests of the form a; <
aj, a; < a4, a; = a4, a; > aj, Or a; > a; to determine the
relative order of all elements in A

e \We'll assume that all elements are distinct, and so note that
the only comparison we need to make is a; < a;.

e [his comparison gives us a yes or no answer

36

o Decision Tree Model ——

e A decision tree is a full binary tree that gives the possible
sequences of comparisons made for a particular input array,
A

e Each internal node is labelled with the indices of the two
elements to be compared

e Each leaf node gives a permutation of A

37

o Decision Tree Model ——

e [he execution of the sorting algorithm corresponds to a path
from the root node to a leaf node in the tree.

e \We take the left child of the node if the comparison is < and
we take the right child if the comparison is >

e [he internal nodes along this path give the comparisons
made by the alg, and the leaf node gives the output of the
sorting algorithm.

38

S Leaf Nodes

e Any correct sorting algorithm must be able to produce each
possible permutation of the input

e [hus there must be at least n! leaf nodes

e [he length of the longest path from the root node to a leaf
in this tree gives the worst case run time of the algorithm
(i.e. the height of the tree gives the worst case runtime)

39

o Example ——

e Consider the problem of sorting an array of size two: A =

(a1,a2)
e Following is a decision tree for this problem.

yes no

40

o In-Class Exercise —_

e Give a decision tree for sorting an array of size three: A =

(a1,a2,a3)
e \What is the height? What is the number of leaf nodes?

41

A Height of Decision Tree ———

e Q: What is the height of a binary tree with at least n! leaf

nodes?
e A: If h is the height, we know that 2" > n/

e Taking log of both sides, we get h > log(n!)

42

A Height of Decision Tree

e Q: What is log(n!)~
o A: It is

log(nx(n—1)*---x1)

logn+log(n—1)+4---4+1log1l
(n/2)log(n/2)

(n/2)(logn — log 2)

Q(nlogn)

1YY

e T hus any decision tree for sorting n elements will have a
height of Q(nlogn)

43

o Take Away ——

e \We've just proven that any comparison-based sorting algo-
rithm takes Q(nlogn) time

e This does not mean that all sorting algorithms take Q2(nlogn)
time

e In fact, there are non comparison-based sorting algorithms
which, under certain circumstances, are asymptotically faster.

44

o Bucket Sort —

e Bucket sort assumes that the input is drawn from a uniform
distribution over the range [0,1)

e Basic idea is to divide the interval [0,1) into n equal size
regions, or buckets

e \We expect that a small number of elements in A will fall into
each bucket

e [0 get the output, we can sort the numbers in each bucket
and just output the sorted buckets in order

45

o Bucket Sort —

//PRE: A is the array to be sorted, all elements in A[i] are between
O and 1 inclusive.
//POST: returns a list which is the elements of A in sorted order
BucketSort (A){
B = new List[]
n = length(A)
for (i=1;i<=n;i++){
insert A[i] at end of list B[floor(n*xA[i])];
}
for (i=0;i<=n-1;i++){
sort list B[i] with insertion sort;

}
return the concatenated list B[O],B[1],...,B[n-1];

}

46

o Bucket Sort —

e Claim: If the input numbers are distributed uniformly over
the range [0,1), then Bucket sort takes expected time O(n)

e Let T'(n) be the run time of bucket sort on a list of size n

e Let B, be the random variable giving the number of elements
in bucket Bli]

e Then T(n) = O(n) + X3 O(B?)

AT

Analysis

—

e We know T'(n) = ©(n) + X173 O(B?)
e Taking expectation of both sides, we have

n—1
E(T(n)) =0(n)+ E (Z CB,?)

1=0

n—1
=0o(n)+ Y E(CB?) LOE
1=0

n—1
=0(n)+ Y CE(B?))
1=0

e [he last step holds since for any constant a and random
variable X, E(aX) = aFE(X) (see Equation C.21 in the text)

48

A AnalysiS ——_

e We claim that E(B?) =2-1/n

e To prove this, we define indicator random variables: X;; =1
if A[j] falls in bucket ¢ and 0 otherwise (defined for all 1,
0<i<n-—1landj 1<j<n)

e Thus, B =Y"_; Xj;

e We can now compute E(BZ-Q) by expanding the square and

regrouping terms

49

Analysis

—

2
E(BY) =E ((Z?:l Xij))
=L (2?21 2 k=1 Xz'sz'k>
= B (X021 X2 + T1<jn T1<ken s XijXin)
= Y"1 E(X2) + S1<j<n D1<h<n ks B(Xij X)) LOE

50

A AnalysiS ——_

e We can evaluate the two summations separately. X;; is 1
with probability 1/n and 0 otherwise

o'ThusEKX%)::1*(1ﬂﬂ-+0*(1—-LMO::1/n

e \Where k # j, the random variables Xij and X;;. are indepen-
dent

e For any two independent random variables X and Y, E(XY) =
E(X)E(Y) (see C.3 in the book for a proof of this)

e T hus we have that

E(X;; Xk) E(X;;)E(X;)
(1/n)(1/n)

(1/n?)

51

Analysis

—

e Substituting these two expected values back into our main
equation, we get:

n

B(BY) = Y B(X{)+ Z Z E(X35X))

= Z(l/n)+ > Z (1/n?)

1<j<n 1<k<n,k#j
n(l/n) + (n)(n — 1)(1/n?)
1+(n—1)/n
2—(1/n)

52

Analysis

—

e Recall that E(T(n)) = ©(n) + X3 (O(E(B?)))
e We can now plug in the equation E(B?) =2 — (1/n) to get
E(T(n)) = ©(n)+ Z 2—-(1/n)

O(n) + @(n)
O(n)

e [hus the entire bucket sort algorithm runs in expected linear
time

53

