Asymptotic Analysis (Review)

Jared Saia
University of New Mexico

S Outline ——

e Background
e Asymptotic Analysis

i ?
o Why study algorithms?

“Seven years of College down the toilet” - John Belushi in Ani-
mal House

Can you get a job without knowing algorithms? Yes, but:

e You won't understand why software systems work the way
they do

e You won't learn the fundamentals of systematic thinking (aka
computation/problem solving)

e You'll have less fun!

i ?
—— Why study algorithms (IT) ———

e Almost all big companies want programmers with knowledge
of algorithms: Google, Facebook, Amazon, Oracle, Yahoo,
Sandia, Los Alamos, etc.

e In Mmost programming job interviews, they will ask you several
questions about algorithms and/or data structures

e Your knowledge of algorithms will set you apart from the
large masses of interviewees who know only how to program

e If you want to start your own company: many startups are
successful because they've found better algorithms for solv-
ing a problem (e.g. Google, OpenAl, Akamai, etc.)

i ?
—— Why Study Algorithms? (ITI) ————

You'll improve your research skills in almost any area

You'll write better, faster code

You'll learn to think more abstractly and mathematically
It's one of the most challenging and interesting area of CS!

o A Real Job Interview Question ——

The following is a real job interview question (thanks to Maksim
Noy):

e YOU are given an array with integers between 1 and 1,000, 00O.

e All integers between 1 and 1,000,000 are in the array at least
once, and one of those integers is in the array twice

e Q: Can you determine which integer is in the array twice?
Can you do it while iterating through the array only once?

A Solution ——

e Ideas on how to solve this problem?? What if we allowed
multiple iterations?

o Naive Algorithm ——

e Create a new array of ints between 1 and 1,000,000, which
we'll use to count the occurences of each number. Initialize
all entries to O

e Go through the input array and each time a number is seen,
update its count in the new array

e GO through the count array and see which number occurs
twice.

e Return this number

o Naive Algorithm AnalysisS —

e Q: How long will this algorithm take?
e A: We iterate through the numbers 1 to 1,000,000 three
times!

e Note that we also use up a lot of space with the extra array
e [his is wasteful of time and space, particularly as the input
array gets very large (e.g. it might be a huge data stream)

e QQ: Can we do better?

S Ideas for a better Algorithm ——

Note that > ;i = (n+ 1)n/2

Let S be the sum of the input array

Let x be the value of the repeated number
Then S = (1,000,000 + 1)1,000,000/2 + x
Thus =5 — (1,000,000 + 1)1,000,000/2

A A better Algorithm ——

e Iterate through the input array, summing up all the numbers,
let S be this sum

e Let z =5—-(1,000,000+ 1)1,000,000/2
e Return x

10
]

A AnalysiS ——_

e [his algorithm takes iterates through the input array just
once

e It uses up essentially no extra space

e It is at least three times faster than the naive algorithm

e Further, if the input array is so large that it won't fit in
memory, this is the only algorithm which will work!

e [hese time and space bounds are the best possible

11

o Take Away ——

e Designing good algorithms matters!

e Not always this easy to improve an algorithm

e However, with some thought and work, you can almost al-
ways get a better algorithm than the naive approach

12

—

How to analyze an algorithm?

There are several resource bounds we could be concerned
about: time, space, communication bandwidth, logic gates,

etc.
However, we are usually most concerned about time

Recall that algorithms are independent of programming lan-

guages and machine types
Q: So how do we measure resource bounds of algorithms

13
]

A Random-access machine model ——

e We will use RAM model of computation in this class

e All instructions operate in serial

e All basic operations (e.g. add, multiply, compare, read, store,
etc.) take unit time

e All “atomic” data (chars, ints, doubles, pointers, etc.) take
unit space

14

A Worst Case AnalysSiS —

e We'll generally be pessimistic when we evaluate resource
bounds

e We'll evaluate the run time of the algorithm on the worst
possible input sequence

e Amazingly, in most cases, we'll still be able to get pretty
good bounds

e Justification: The “average case’ is often about as bad as
the worst case.

15
]

o Example AnalysiS —_

e Let's consider the more general problem of the duplicate
number problem, where the numbers are 1 to n instead of 1
to 1,000,000

16
]

o Algorithm 1 ———

e Create a new ‘“count” array of ints of size n, which we’'ll use
to count the occurences of each number. Initialize all entries
to O

e GO through the input array and each time a number is seen,
update its count in the “count” array

e AS soon as a number is seen in the input array which has
already been counted once, return this number

17

o Algorithm 2 ———

e Iterate through the input array, summing up all the numbers,
let S be this sum

eletz=S5S—-—(n+1)n/2
e Return x

18
l

o Example Analysis: Time —

e Worst case: Algorithm 1 does 5 xn operations (n inits to O
in “count” array, n reads of input array, n reads of “count”
array (to see if value is 1), n increments, and n stores into
count array)

e Worst case: Algorithm 2 does 2 xn 4+ 4 operations (n reads
of input array, n additions to value S, 4 computations to
determine z given S)

19
]

S Example Analysis: Space ——

e \Worst Case: Algorithm 1 uses n additional units of space to
store the “count” array
e \Worst Case: Algorithm 2 uses 2 additional units of space

20

o A Simpler Analysis —

e Analysis above can be tedious for more complicated algo-
rithms

e In many cases, we don't care about constants. 5n is about
the same as 2n + 4 which is about the same as an + b for
any constants a and b

e However we do still care about the difference in space: n is
very different from 2

e Asymptotic analysis is the solution to removing the tedium
but ensuring good analysis

21

. o
A Asymptotic analysis? —_

e A tool for analyzing time and space usage of algorithms

e Assumes input size is a variable, say n, and gives time and
space bounds as a function of n

e Ignores multiplicative and additive constants

e Concerned only with the rate of growth

e E.g. Treats run times of n, 10,000 xn 4+ 2000, and .5n 4+ 2
all the same (We use the term O(n) to refer to all of them)

22

. . -
—— What is Asymptotic Analysis® (IT) ———

e Informally, O notation is the leading (i.e. quickest growing)
term of a formula with the coefficient stripped off

e O is sort of a relaxed version of “<”

e E.g. nis O(n) and n is also O(n?)

e By convention, we use the smallest possible O value i.e. we
say n is O(n) rather than n is O(n?)

23

A More Examples

E.g. n, 10,000n — 2000, and .5n 4 2 are all O(n)
n 4+ logn, n —+/n are O(n)

n2+n+logn, 10n? 4+ n — Vv/n are O(n?)

nlogn + 10n is O(nlogn)

10 x log?n is O(log?n)

ny/n +nlogn + 10n is O(n+/n)

10,000, 2°9 and 4 are O(1)

24

o More Examples ———_

e Algorithm 1 and 2 both take time O(n)
e Algorithm 1 uses O(n) extra space
e But, Algorithm 2 uses O(1) extra space

25

o Formal Defn of Big-O ———

e A function f(n) is O(g(n)) if there exist positive constants c
and ng such that 0 < f(n) <cg(n) for all n > ng

26

Example ——

e Let's show that f(n) = 10n+ 100 is O(g(n)) where g(n) =n
e We need to give constants ¢ and ng such that 0 < f(n) <

cg(n) for all n > ng
e In other words, we need constants ¢ and ng such that 10n +

100 < cn for all n > ng

27

Example ——

We can solve for appropriate constants:

10n 4+ 100 < cn
104 100/n < c
So if n > 1, then ¢ should be greater than 110.

In other words, for all n > 1, 10n 4+ 100 < 110n
So 10n + 100 is O(n)

(1)
(2)

28

A Questions —__

Express the following in O notation

n3/1000 — 100n? — 100n + 3
logn + 100

10 * log?n 4+ 100

i

29

—

Relatives of big-O ——

T he following are relatives of big-O:

000

“SH

11211
ll<77
ll>11

30

A Formal Defns —

e O(g(n)) = {f(n) : there exist positive constants ¢ and ng
such that 0 < f(n) <cg(n) for all n > ngp}

e O(g(n)) = {f(n) : there exist positive constants ci,co, and ng
such that 0 < ci19(n) < f(n) <cog(n) for all n > ng}

e Q(g(n)) = {f(n) : there exist positive constants ¢ and ng
such that 0 < cg(n) < f(n) for all n > ng}

31

—— Formal Defns (I1) ——

e o(g(n)) = {f(n) : for any positive constant ¢ > 0 there exists
ng > 0 such that 0 < f(n) < cg(n) for all n > ng}

e w(g(n)) ={f(n) : for any positive constant ¢ > 0 there exists
ng > 0 such that 0 < cg(n) < f(n) for all n > ng}

32

—

Relatives of big-O ——

When would you use each of these? Examples:

IR GRONG

IISH

IIZ”
ll<11
ll>11

This algorithm is O(n?) (i.e. worst case is ©(n?))

This algorithm is ©(n) (best and worst case are ©(n))
Any comparison-based algorithm for sorting is Q(nlogn)
Can you write an algorithm for sorting that is o(n?)?
This algorithm is not linear, it can take time w(n)

33

A Rule of Thumb

e Let f(n), g(n) be two functions of n

e Let f1(n), be the fastest growing term of f(n), stripped of
its coefficient.

e Let g1(n), be the fastest growing term of g(n), stripped of
its coefficient.

Then we can say.

o If f1(n) < g1(n) then f(n) = O(g(n))
o If f1(n) > g1(n) then f(n) = Q(g(n))
o If f1(n) =g1(n) then f(n) =©(g(n))
o If f1(n) <g1(n) then f(n) = o(g(n))
o If f1(n) > g1(n) then f(n) =w(g(n))

34

More Examples

—

The following are all true statements:

>n 142 is O(n3), Q(n3) and ©(n3)
logn is o(4/n)

logn is o(log?n)

10,000n2 4 25n is ©(n?)

35

Problems

—

True or False? (Justify your answer)

n3 4+ 4 is w(n?)
nlogn3 is ©(nlogn)
log35n? is ©(logn)
1071992 4 n is ©(n)
nlogn is Q2(n)

n3 4+ 4 is o(n?)

36

o Another Example ——

e Let f(n) = 10log?n 4+ logn, g(n) = log?n. Let's show that

f(n) =©(g(n)).
e We want positive constants cq,co and ng
such that 0 < c19(n) < f(n) < cog(n) for all n > ng

0<cy Ingn < 10Ioan—|— logn < co Ingn
Dividing by log?n, we get:

0<c¢1<10+4+1/logn < co

e If we choose ¢c; = 1, ¢co = 11 and ng = 2, then the above

inequality will hold for all n > ng

37

o At-Home EXxercise

Show that for f(n) = n + 100 and g(n) = (1/2)n?, that f(n) #
©(g(n))

e What statement would be true if f(n) = (g(n)) 7
e Show that this statement can not be true.

38

