
Recurrences and Induction (Review)

Jared Saia

University of New Mexico



Today’s Outline

• L’Hopital’s Rule

• Log Facts

• Recurrence Relations

1



L’Hopital

For any functions f(n) and g(n) which approach infinity and are

differentiable, L’Hopital tells us that:

• limn→∞
f(n)
g(n) = limn→∞

f ′(n)
g′(n)

2



Example

• Q: Which grows faster lnn or
√
n?

• Let f(n) = lnn and g(n) =
√
n

• Then f ′(n) = 1/n and g′(n) = (1/2)n−1/2

• So we have:

lim
n→∞

lnn
√
n

= lim
n→∞

1/n

(1/2)n−1/2

= lim
n→∞

2

n1/2
= 0

• Thus
√
n grows faster than lnn and so lnn = O(

√
n)

3



A digression on logs

It rolls down stairs alone or in pairs,

and over your neighbor’s dog,

it’s great for a snack or to put on your back,

it’s log, log, log!

- “The Log Song” from the Ren and Stimpy Show

• The log function shows up very frequently in algorithm anal-

ysis

• As computer scientists, when we use log, we’ll mean log2
(i.e. if no base is given, assume base 2)

4



Definition

• logx y is by definition the value z such that xz = y

• xlogx y = y by definition

5



Examples

• log 1 = 0

• log 2 = 1

• log 32 = 5

• log 2k = k

Note: logn is way, way smaller than n for large values of n

6



Examples

• log3 9 = 2

• log5 125 = 3

• log4 16 = 2

• log24 24
100 = 100

7



Facts about exponents

Recall that:

• (xy)z = xyz

• xyxz = xy+z

From these, we can derive some facts about logs

8



Facts about logs

To prove both equations, raise both sides to the power of 2, and

use facts about exponents

• Fact 1: log(xy) = logx+ log y

• Fact 2: log ac = c log a

Memorize these two facts

9



Incredibly useful fact about logs

• Fact 3: logc a = log a/ log c

To prove this, consider the equation a = clogc a, take log2 of both

sides, and use Fact 2. Memorize this fact

10



Log facts to memorize

• Fact 1: log(xy) = logx+ log y

• Fact 2: log ac = c log a

• Fact 3: logc a = log a/ log c

These facts are sufficient for all your logarithm needs. (You just

need to figure out how to use them)

11



Logs and O notation

• Note that log8 n = logn/ log 8.

• Note that log600 n
200 = 200 ∗ logn/ log 600.

• Note that log100000 30∗n2 = 2∗logn/ log 100000+log30/ log 100000.

• Thus, log8 n, log600 n
600, and log100000 30∗n2 are all O(logn)

• In general, for any constants k1 and k2, logk1 n
k2 = k2 logn/ log k1,

which is just O(logn)

12



Take Away

• All log functions of form k1 logk2 k3 ∗n
k4 for constants k1, k2,

k3 and k4 are O(logn)

• For this reason, we don’t really “care” about the base of the

log function when we do asymptotic notation

• Thus, binary search, ternary search and k-ary search all take

O(logn) time

13



Important Note

• log2 n = (logn)2

• log2 n is O(log2 n), not O(logn)

• This is true since log2 n grows asymptotically faster than

logn

• All log functions of form k1 log
k2
k3

k4 ∗nk5 for constants k1, k2,

k3,k4 and k5 are O(logk2 n)

14



An Exercise

Simplify and give O notation for the following functions. In the

big-O notation, write all logs base 2:

• log 10n2

• log2 n4

• 2log4 n

• log log
√
n

15



Does big-O really matter?

Let n = 100000 and ∆t = 1µs

logn 1.7 ∗ 10−5 seconds√
n 3.2 ∗ 10−4 seconds

n .1 seconds
n logn 1.2 seconds
n
√
n 31.6 seconds

n2 2.8 hours
n3 31.7 years
2n > 1 century

(from Classic Data Structures in C++ by Timothy Budd)

16



Recurrence Relations

“Oh how should I not lust after eternity and after the nuptial

ring of rings, the ring of recurrence” - Friedrich Nietzsche, Thus

Spoke Zarathustra

• Getting the run times of recursive algorithms can be chal-

lenging

• Consider an algorithm for binary search (next slide)

• Let T (n) be the run time of this algorithm on an array of

size n

• Then we can write T (1) = 1, T (n) = T (n/2) + 1

17



Alg: Binary Search

bool BinarySearch (int arr[], int s, int e, int key){

if (e-s<=0) return false;

int mid = (e+s)/2;

if (key==arr[mid]){

return true;

}else if (key < arr[mid]){

return BinarySearch (arr,s,mid,key);}

else{

return BinarySearch (arr,mid,e,key)}

}

18



Recurrence Relations

• T (n) = T (n/2) + 1 is an example of a recurrence relation

• A Recurrence Relation is any equation for a function T , where

T appears on both the left and right sides of the equation.

• We always want to “solve” these recurrence relation by get-

ting an equation for T , where T appears on just the left side

of the equation

19



Recurrence Relations

• Whenever we analyze the run time of a recursive algorithm,

we will first get a recurrence relation

• To get the actual run time, we need to solve the recurrence

relation

20



Substitution Method

• One way to solve recurrences is the substitution method aka

“guess and check”

• What we do is make a good guess for the solution to T (n),

and then try to prove this is the solution by induction

21



Example

• Let’s guess that the solution to T (n) = T (n/2)+1, T (1) = 1

is T (n) = O(logn)

• In other words, T (n) ≤ c logn for all n ≥ n0, for some positive

constants c, n0
• We can prove that T (n) ≤ c logn is true by plugging back

into the recurrence

22



Proof

We prove this by induction:

• B.C.: T (2) = 2 ≤ c log 2 provided that c ≥ 2

• I.H.: For all j < n, T (j) ≤ c log(j)

• I.S.:

T (n) = T (n/2) + 1

≤ (c log(n/2)) + 1

= c(logn− log 2) + 1

= c logn− c+1

≤ c logn

First step holds by IH. Last step holds for all n > 0 if c ≥ 1.

Thus, entire proof holds if n ≥ 2 and c ≥ 2.

23



Recurrences and Induction

Recurrences and Induction are closely related:

• To find a solution to f(n), solve a recurrence

• To prove that a solution for f(n) is correct, use induction

For both recurrences and induction, we always solve a big prob-

lem by reducing it to smaller problems!

24



Some Examples

• The next several problems can be attacked by induction/recurrences

• For each problem, we’ll need to reduce it to smaller problems

• Question: How can we reduce each problem to a smaller

subproblem?

25



Sum Problem

• f(n) is the sum of the integers 1, . . . , n

26



Tree Problem

• f(n) is the maximum number of leaf nodes in a binary tree

of height n

Recall:

• In a binary tree, each node has at most two children

• A leaf node is a node with no children

• The height of a tree is the length of the longest path from

the root to a leaf node.

27



Binary Search Problem

• f(n) is the maximum number of queries that need to be

made for binary search on a sorted array of size n.

28



Dominoes Problem

• f(n) is the number of ways to tile a 2 by n rectangle with

dominoes (a domino is a 2 by 1 rectangle)

29



Simpler Subproblems

• Sum Problem: What is the sum of all numbers between 1

and n− 1 (i.e. f(n− 1))?

• Tree Problem: What is the maximum number of leaf nodes

in a binary tree of height n− 1? (i.e. f(n− 1))

• Binary Search Problem: What is the maximum number of

queries that need to be made for binary search on a sorted

array of size n/2? (i.e. f(n/2))

• Dominoes problem: What is the number of ways to tile a

2 by n − 1 rectangle with dominoes? What is the number

of ways to tile a 2 by n − 2 rectangle with dominoes? (i.e.

f(n− 1), f(n− 2))

30



Recurrences

• Sum Problem: f(n) = f(n− 1) + n, f(1) = 1

• Tree Problem: f(n) = 2f(n− 1), f(0) = 1

• Binary Search Problem: f(n) = f(n/2) + 1, f(2) = 1

• Dominoes problem: f(n) = f(n − 1) + f(n − 2), f(1) = 1,

f(2) = 2

31



Guesses

• Sum Problem: f(n) = (n+1)n/2

• Tree Problem: f(n) = 2n

• Binary Search Problem: f(n) = logn

• Dominoes problem: f(n) = 1√
5


1+

√
5

2

n
− 1√

5


1−

√
5

2

n

32



Inductive Proofs

“Trying is the first step to failure” - Homer Simpson

• Now that we’ve made these guesses, we can try using induc-

tion to prove they’re correct (the substitution method)

• We’ll give inductive proofs that these guesses are correct for

the first three problems

33



Sum Problem

• Want to show that f(n) = (n+1)n/2.

• Prove by induction on n

• Base case (BC): f(1) = 2 ∗ 1/2 = 1

• Inductive hypothesis (IH): for all j < n, f(j) = (j +1)j/2

• Inductive step (IS):

f(n) = f(n− 1) + n

= n(n− 1)/2+ n

= (n+1)n/2

Where the first step holds by IH.

34



Tree Problem

• Want to show that f(n) = 2n.

• Prove by induction on n

• BC: f(0) = 20 = 1

• IH: for all j < n, f(j) = 2j

• IS:

f(n) = 2 ∗ f(n− 1)

= 2 ∗ (2n−1)

= 2n

Where the first step holds by IH.

35



Binary Search Problem

• Want to show that f(n) = logn. (assume n is a power of 2)

• Prove by induction on n

• BC: f(2) = log2 = 1

• IH: for all j < n, f(j) = log j

• IS:

f(n) = f(n/2) + 1

= logn/2+ 1

= logn− log 2 + 1

= logn

Where the first step holds by IH.

36



In Class Exercise

• Consider the recurrence f(n) = 2f(n/2) + 1, f(1) = 1

• Guess that f(n) ≤ cn− 1:

• Q1: Show the base case - for what values of c does it hold?

• Q2: What is the inductive hypothesis?

• Q3: Show the inductive step.

37



Graph Induction: Coloring Graphs

• A proper coloring of a graph is an assignment of a color

to each vertex such that every edge in the graph has two

different colors at its endpoints.

• The maximum degree of a graph is maximum degree - num-

ber of neighbors - of any vertex.

• We can show that any graph with maximum degree 3 can be

properly colored with at most 4 colors.

38



Induction

Fact: Any graph with maximum degree 3 can be properly colored

with at most 4 colors. Proof by induction on n:

• BC: n = 1, a graph with 1 node can be colored with just 1

color

• IH: Any graph with j < n nodes and maximum degree 3 can

be colored with 4 colors

• IS: Consider any graph, G with n nodes and maximum degree

at most 3. Remove any node v and its edges to get a graph

G′ that has n−1 nodes and maximum degree at most 3. By

the IH, we can color G′ with at most 4 colors. Also, v has at

most 3 neighbors in G′. Hence, we can assign v one of the 4

colors that does not appear on any of the 3 neighbors. This

gives a proper coloring of G.

39



BEWARE: “Build-up” Induction

Recall: A graph is connected if there is a path between every

pair of nodes.

Claim: Any graph where every node has degree at least 2 is

connected. “Proof” by induction on n.

• BC: n = 3, a triangle is connected

• IH: For all j < n, any graph with j nodes where each node

has degree at least 2 is connected.

• IS: Consider some graph of size n − 1 with degree of every

node equal to 2. By the IH, it is connected. Now, add a

node and two edges from that new node to the graph.

This new graph of size n is connected.

40



BEWARE: “Build-up” Induction

• This “proof” is wrong! In fact, the claim is wrong - Can you

find a counterexample?

• What happened? Build up does not ensure you’re proving

things for every required graph

• “Build-up” induction lures you into a tangled web of lies.

Don’t use it!

• Instead use “take away” induction: start with an arbitrary

graph of the proper form, and then make it smaller in order

to use the IH.

• “Take Away” induction is trustworthy. It doesn’t work when

you try to prove false things!

41



“Take-away” Induction Attempt

Claim: Any graph where every node has degree at least 2 is

connected. Proof attempt by induction on n.

• BC: n = 3, a triangle is connected

• IH: For all j < n, any graph with j nodes where each node

has degree at least 2 is connected.

• IS: Consider an arbitrary graph, G with n nodes, each of

which has degree at least 2. Now, remove some node v

and the edges that touch it from the graph G to get a new

graph G′. Can we apply the IH to G′? No! Because some

nodes in G′ may not have degree at least 2, since their edges

to v were removed.

So the proof fails, as it should, since the claim is false!

42



BEWARE: Smaller is always Minus 1

• The IH only applies to smaller problems, but smaller doesn’t

have to mean exactly 1 less.

• You’re unnecessarily restricting yourself if you assume that

and there will be many (true) things you won’t be able to

prove

• In the following proof, the subtrees T1 and T2 can range in

size from n− 1 all the way down to 1.

43



Inductive Proof

Fact: In any binary tree, the number of nodes with two children
is one less than the number of leaves. Proof by induction on n:

• BC: n = 1, there is 1 leaf node and 0 nodes with 2 children.
• IH: ∀j,1 ≤ j < n, A binary tree with j nodes has a number

of nodes with 2 children that is 1 less than the number of
leaves.

• IS: Consider an arbitrary binary tree, T with n > 1 nodes. If
the root node has 1 child, let T1 be the subtree rooted at that
child, applying the IH to that subtree gives the result since
the root node is neither a leaf nor a node with 2 children. If
the root node has 2 children, let T1 and T2 be the subtrees
rooted at each child and x1, y1, x2, y2 be the number of
degree 2 nodes and leaves in each of them. By the IH,
T1 has x1 = y1 − 1 and T2 has x2 = y2 − 1. Let x, y be
the number of degree 2 nodes and leaf nodes in T . Then
x = x1 + x2 +1 = (y1 − 1) + (y2 − 1) + 1 = y − 1.

44



Reading

• “Proof by Induction” notes by Jeff Erickson (on class web

page)

• Chapter 3 and 4, and Appendices in the text

45


