
CS 561, Lecture 10

Jared Saia

University of New Mexico

Outline

• Red Black Trees (Chapter 13)

1

Red-Black Properties

A BST is a red-black tree if it satisfies the RB-Properties

1. Every node is either red or black

2. The root is black

3. Every leaf (NIL) is black

4. If a node is red, then both its children are black

5. For each node, all paths from the node to descendant leaves

contain the same number of black nodes

2

Example RB-Tree

5

2 4

7

3 6

8

3



Black Height

• Black-height of a node x, bh(x) is the number of black nodes

on any path from, but not including x down to a leaf node.

• Note that the black-height of a node is well-defined since all

paths have the same number of black nodes

• The black-height of an RB-Tree is just the black-height of

the root

4

Key Lemma

• Lemma: A RB-Tree with n internal nodes has height at most

2 log(n + 1)

• Proof Sketch:

1. The subtree rooted at the node x contains at least

2bh(x) − 1 internal nodes

2. For the root r, bh(r) ≥ h/2, thus n ≥ 2h/2 − 1. Taking

logs of both sides, we get that h ≤ 2 log(n + 1)

5

Proof

1) The subtree rooted at the node x contains at least 2bh(x)− 1

internal nodes. Show by induction on the height of x.

• BC: If the height of x is 0, then x is a leaf, and subtree

rooted at x does indeed contain 20 − 1 = 0 internal nodes

• IH: For all nodes y of height less than x, the subtree rooted

at y contains at least 2bh(y) − 1 internal nodes.

• IS: Consider a node x which is an internal node with two

children(all internal nodes have two children). Each child

has black-height of either bh(x) or bh(x) − 1 (the former if

it is red, the latter if it is black). Since the height of these

children is less than x, we can apply the inductive hypothesis

to conclude that each child has at least 2bh(x)−1− 1 internal

nodes. This implies that the subtree rooted at x has at least

(2bh(x)−1−1)+(2bh(x)−1−1)+1 = 2bh(x)−1 internal nodes.

This proves the claim.

6

Maintenance?

• How do we ensure that the Red-Black Properties are main-

tained?

• I.e. when we insert a new node, what do we color it? How do

we re-arrange the new tree so that the Red-Black Property

holds?

• How about for deletions?

7



Left-Rotate

• Left-Rotate(x) takes a node x and “rotates” x with its right

child

• Right-Rotate is the symmetric operation

• Both Left-Rotate and Right-Rotate preserve the BST Prop-

erty

• We’ll use Left-Rotate and Right-Rotate in the RB-Insert pro-

cedure

8

Picture

x

y

y

x
T1

T2 T3 T1 T2

T3

Left!Rotate(x)

Right!Rotate(y)

9

Example

x

y

5

7

6 8

3

42

y

x

7

5

3

2 4

6

8

Left!Rotate(x)

10

Binary Search Tree Property

• Let x be a node in a binary search tree. If y is a node in the

left subtree of x, then key(y)≤key(x). If y is a node in the

right subtree of x then key(y)≥key(x)

11



In-Class Exercise

Show that Left-Rotate(x) maintains the BST Property. In other

words, show that if the BST Property was true for the tree

before the Left-Rotate(x) operation, then it’s true for the tree

after the operation.

• Show that after rotation, the BST property holds for the

entire subtree rooted at x

• Show that after rotation, the BST property holds for the

subtree rooted at y

• Now argue that after rotation, the BST property holds for

the entire tree

12

RB-Insert(T,z)

1. Set left(z) and right(z) to be NIL

2. Let y be the last node processed during a search for z in T

3. Insert z as the appropriate child of y (left child if key(z)≤ y,

right child otherwise)

4. Color z red

5. Call the procedure RB-Insert-Fixup

13

RB-Insert-Fixup(T,z)

RB-Insert-Fixup(T,z){

while (color(p(z)) is red){

case 1: z’s uncle, y, is red{

do case 1

}

case 2: z’s uncle, y, is black and z is a right child{

do case 2

}

case 3: z’s uncle, y, is black and z is a left child{

do case 3

}

}

color(root(T)) = black;

}

14

Case 1

D

B

A

C C

A D

B

C

B

A

D

C

B

A

D

T1

T2 T3

T4 T5

T1 T2

T3 T4 T5

T1

T2 T3

T4 T5

T1 T2

T3 T4 T5

z

y

new z

z

y

new z

15



Case 2 and 3

B

A

C

T1

T2 T3

z

T4 y

C

B

A

T1 T2

T3

T4

Case 2 Case 3

B

A C

z

z

y

T1 T2 T3 T4

16

Loop Invariant

At the start of each iteration of the loop:

• Node z is red

• If parent(z) is the root, then parent(z) is black

• If there is a violation of the red-black properties, there is at

most one violation, and it is either property 2 or 4. If there is

a violation of property 2, it occurs because z is the root and

is red. If there is a violation of property 4, it occurs because

both z and parent(z) are red.

17

Pseudocode

• Detailed Pseudocode for RB-Insert and RB-Insert-Fixup is in

the book, Chapter 13.3

• A detailed proof of correctness for RB-Insert-Fixup in the the

same Chapter

• Code for RB-Deletion is also in Chapter 13

18

Other Balanced BSTs

• We’ll now briefly discuss some other balanced BSTs

• They all implement Insert, Delete, Lookup, Successor, Pre-

decessor, Maximum and Minimum efficiently

19



AVL Trees

• An AVL tree is height-balanced: For each node x, the heights

of the left and right subtrees of x differ by at most 1

• Each node has an additional height field h(x)

• Claim: An AVL tree with n nodes has height O(logn)

20

AVL Trees

• Claim: An AVL tree with n nodes has height O(logn)

• Q: For an AVL tree of height h, how many nodes must it

have in it?

• A: We can write a recurrence relation. Let T (h) be the

minimum number of nodes in a tree of height h

• Then T (h) = T (h− 1) + T (h− 2) + 1, T (2) = T (1) ≥ 1

• This is similar to the recurrence relation for Fibonnaci num-

bers! Solution:

T (h) =
1√
5

(
1 +

√
5

2

)h

− 2

21

AVL Trees

• So we have the equation n > T (h). Let φ = 1+
√

5
2 . Then:

n ≥
1√
5
(φh)− 2 (1)

logn ≥ log(
1√
5
) + h logφ− 1 (2)

logn− log(
1√
5
) + 1 ≥ h logφ (3)

C ∗ logn ≥ h (4)

• Where the final inequality holds for appropriate constant C,

and for n large enough. The final inequality implies that

h = O(logn)

22

AVL Tree Insertion

• After insert into an AVL tree, the tree may no longer be

height-balanced

• Need to “fix-up” the subtrees so that they become height-

balanced again

• Can do this using rotations (similar to case for RB-Trees)

• Similar story for deletions

23



B-Trees

• B-Trees are balanced search trees designed to work well on

disks

• B-Trees are not binary trees: each node can have many

children

• Each node of a B-Tree contains several keys, not just one

• When doing searches, we decide which child link to follow by

finding the correct interval of our search key in the key set

of the current node.

24

Disk Accesses

• Consider any search tree

• The number of disk accesses per search will dominate the

run time

• Unless the entire tree is in memory, there will usually be a

disk access every time an arbitrary node is examined

• The number of disk accesses for most operations on a B-tree

is proportional to the height of the B-tree

• I.e. The info on each node of a B-tree can be stored in main

memory

25

B-Tree Properties

The following is true for every node x

• x stores keys, key1(x), . . . keyl(x) in sorted order (nondecreas-

ing)

• x contains pointers, c1(x), . . . , cl+1(x) to its children

• Let ki be any key stored in the subtree rooted at the i-th child

of x, then k1 ≤ key1(x) ≤ k2 ≤ key2(x) · · · ≤ keyl(x) ≤ kl+1

26

B-Tree Properties

• All leaves have the same depth

• Lower and upper bounds on the number of keys a node can

contain. Given as a function of a fixed integer t

– Every node other than the root must have ≥ (t− 1) keys,

and t children. If the tree is non-empty, the root must

have at least one key (and 2 children)

– Every node can contain at most 2t−1 keys, so any internal

node can have at most 2t children

27



Note

• The above properties imply that the height of a B-tree is no

more than logt
n+1
2 , for t ≥ 2, where n is the number of keys.

• If we make t, larger, we can save a larger (constant) fraction

over RB-trees in the number of nodes examined

• A (2-3-4)-tree is just a B-tree with t = 2

28

In-Class Exercise

We will now show that for any B-Tree with height h and n keys,

h ≤ logt
n+1
2 , where t ≥ 2.

Consider a B-Tree of height h > 1

• Q1: What is the minimum number of nodes at depth 1, 2,

and 3

• Q2: What is the minimum number of nodes at depth i?

• Q3: Now give a lowerbound for the total number of keys

(e.g. n ≥???)

• Q4: Show how to solve for h in this inequality to get an

upperbound on h

29

Splay Trees

• A Splay Tree is a kind of BST where the standard operations

run in O(logn) amortized time

• This means that over l operations (e.g. Insert, Lookup,

Delete, etc), where l is sufficiently large, the total cost is

O(l ∗ logn)

• In other words, the average cost per operation is O(logn)

• However a single operation could still take O(n) time

• In practice, they are very fast

30

Skip Lists

• Technically, not a BST, but they implement all of the same

operations

• Very elegant randomized data structure, simple to code but

analysis is subtle

• They guarantee that, with high probability, all the major op-

erations take O(logn) time

• We’ll discuss them more next class

31



High Level Analysis

Comparison of various BSTs

• RB-Trees: + guarantee O(logn) time for each operation,

easy to augment, − high constants

• AVL-Trees: + guarantee O(logn) time for each operation,

− high constants

• B-Trees: + works well for trees that won’t fit in memory, −
inserts and deletes are more complicated

• Splay Tress: + small constants, − amortized guarantees only

• Skip Lists: + easy to implement, − runtime guarantees are

probabilistic only

32

Which Data Structure to use?

• Splay trees work very well in practice, the “hidden constants”

are small

• Unfortunately, they can not guarantee that every operation

takes O(logn)

• When this guarantee is required, B-Trees are best when the

entire tree will not be stored in memory

• If the entire tree will be stored in memory, RB-Trees, AVL-

Trees, and Skip Lists are good

33


