

Black Height _______

Key Lemma

- Black-height of a node x, bh(x) is the number of black nodes on any path from, but not including x down to a leaf node.
- Note that the black-height of a node is well-defined since all paths have the same number of black nodes
- The black-height of an RB-Tree is just the black-height of the root
- Lemma: A RB-Tree with n internal nodes has height at most $2 log(n + 1)$
- Proof Sketch:
	- 1. The subtree rooted at the node x contains at least $2^{bh(x)} - 1$ internal nodes
	- 2. For the root r , $bh(r) \geq h/2$, thus $n \geq 2^{h/2} 1$. Taking logs of both sides, we get that $h < 2 \log(n + 1)$

Proof

1) The subtree rooted at the node x contains at least $2^{bh(x)} - 1$ internal nodes. Show by induction on the height of x .

- BC: If the height of x is 0, then x is a leaf, and subtree rooted at x does indeed contain $2^0 - 1 = 0$ internal nodes
- IH: For all nodes y of height less than x , the subtree rooted at y contains at least $2^{bh(y)} - 1$ internal nodes.
- IS: Consider a node x which is an internal node with two children(all internal nodes have two children). Each child has black-height of either $bh(x)$ or $bh(x) - 1$ (the former if it is red, the latter if it is black). Since the height of these children is less than x , we can apply the inductive hypothesis to conclude that each child has at least $2^{bh(x)-1} - 1$ internal nodes. This implies that the subtree rooted at x has at least $(2^{bh(x)-1}-1)+(2^{bh(x)-1}-1)+1=2^{bh(x)}-1$ internal nodes. This proves the claim.

Maintenance? _____

- How do we ensure that the Red-Black Properties are maintained?
- I.e. when we insert a new node, what do we color it? How do we re-arrange the new tree so that the Red-Black Property holds?
- How about for deletions?

4

5

 $\qquad \qquad$ RB-Insert (T, z) $\qquad \qquad$

Show that Left-Rotate(x) maintains the BST Property. In other words, show that if the BST Property was true for the tree before the Left-Rotate(x) operation, then it's true for the tree after the operation.

In-Class Exercise

- Show that after rotation, the BST property holds for the entire subtree rooted at x
- Show that after rotation, the BST property holds for the subtree rooted at y
- Now argue that after rotation, the BST property holds for the entire tree
- 1. Set left(z) and right(z) to be NIL
- 2. Let y be the last node processed during a search for z in T
- 3. Insert z as the appropriate child of y (left child if key(z) \lt y, right child otherwise)
- 4. Color z red
- 5. Call the procedure RB-Insert-Fixup

AVL Trees • An AVL tree is height-balanced: For each node x , the heights of the left and right subtrees of x differ by at most 1 • Each node has an additional height field $h(x)$ • Claim: An AVL tree with n nodes has height $O(\log n)$ 20 AVL Trees • Claim: An AVL tree with n nodes has height $O(\log n)$ • \odot : For an AVL tree of height h, how many nodes must it have in it? • A: We can write a recurrence relation. Let $T(h)$ be the minimum number of nodes in a tree of height h • Then $T(h) = T(h-1) + T(h-2) + 1$, $T(2) = T(1) > 1$ • This is similar to the recurrence relation for Fibonnaci numbers! Solution: $T(h) = \frac{1}{\sqrt{5}}$ $(1 + \sqrt{5})$ 2 \setminus^h -2 21 AVL Trees • So we have the equation $n > T(h)$. Let $\phi = \frac{1+\sqrt{5}}{2}$. $\frac{-\sqrt{5}}{2}$. Then: $n \geq \frac{1}{\sqrt{5}}(\phi^h) - 2$ (1) $\log n \geq \log(\frac{1}{\sqrt{5}}) + h \log \phi - 1$ (2) $\log n - \log(\frac{1}{\sqrt{5}}) + 1 \ge h \log \phi$ (3) $C * \log n > h$ (4) • Where the final inequality holds for appropriate constant C , and for n large enough. The final inequality implies that $h = O(\log n)$ NVL Tree Insertion • After insert into an AVL tree, the tree may no longer be height-balanced • Need to "fix-up" the subtrees so that they become heightbalanced again • Can do this using rotations (similar to case for RB-Trees) • Similar story for deletions

23

B-Trees • B-Trees are balanced search trees designed to work well on disks • B-Trees are not binary trees: each node can have many children • Each node of a B-Tree contains several keys, not just one • When doing searches, we decide which child link to follow by finding the correct interval of our search key in the key set of the current node. 24 Disk Accesses _____ • Consider any search tree • The number of disk accesses per search will dominate the run time • Unless the entire tree is in memory, there will usually be a disk access every time an arbitrary node is examined • The number of disk accesses for most operations on a B-tree is proportional to the height of the B-tree • I.e. The info on each node of a B-tree can be stored in main memory 25 B-Tree Properties The following is true for every node x • x stores keys, $key_1(x),...key_l(x)$ in sorted order (nondecreasing) • x contains pointers, $c_1(x), \ldots, c_{l+1}(x)$ to its children • Let k_i be any key stored in the subtree rooted at the *i*-th child of x, then $k_1 \leq key_1(x) \leq k_2 \leq key_2(x) \cdots \leq key_l(x) \leq k_{l+1}$ B-Tree Properties • All leaves have the same depth • Lower and upper bounds on the number of keys a node can contain. Given as a function of a fixed integer t – Every node other than the root must have $\geq (t-1)$ keys, and t children. If the tree is non-empty, the root must have at least one key (and 2 children) – Every node can contain at most 2t−1 keys, so any internal node can have at most 2t children

Note

- The above properties imply that the height of a B-tree is no more than log $_t\frac{n+1}{2}$, for $t\geq 2$, where n is the number of keys.
- If we make t , larger, we can save a larger (constant) fraction over RB-trees in the number of nodes examined
- A (2-3-4)-tree is just a *B*-tree with $t = 2$

In-Class Exercise

We will now show that for any B-Tree with height h and n keys, $h \leq \log_t \frac{n+1}{2}$, where $t \geq 2$.

Consider a B-Tree of height $h > 1$

- Q1: What is the minimum number of nodes at depth 1, 2, and 3
- $Q2$: What is the minimum number of nodes at depth i ?
- Q3: Now give a lowerbound for the total number of keys $(e.g. n > ???)$
- $Q4$: Show how to solve for h in this inequality to get an upperbound on h

High Level Analysis _____

Which Data Structure to use?

Comparison of various BSTs

- RB-Trees: $+$ guarantee $O(\log n)$ time for each operation, easy to augment, $-$ high constants
- AVL-Trees: $+$ guarantee $O(\log n)$ time for each operation, − high constants
- B-Trees: $+$ works well for trees that won't fit in memory, $$ inserts and deletes are more complicated
- Splay Tress: + small constants, − amortized guarantees only
- Skip Lists: $+$ easy to implement, $-$ runtime guarantees are probabilistic only
- Splay trees work very well in practice, the "hidden constants" are small
- Unfortunately, they can not guarantee that every operation takes $O(\log n)$
- When this guarantee is required, B-Trees are best when the entire tree will not be stored in memory
- If the entire tree will be stored in memory, RB-Trees, AVL-Trees, and Skip Lists are good

32