CS 561, Lecture 10

Jared Saia
University of New Mexico

——

Outline —

e Red Black Trees (Chapter 13)

—

Red-Black PropertieS ——

A BST is a red-black tree if it satisfies the RB-Properties

A

Every node is either red or black

The root is black

Every leaf (NIL) is black

If a node is red, then both its children are black

For each node, all paths from the node to descendant leaves
contain the same number of black nodes

—

Example RB-Tree —

Black Height ——— Key Lemma ———

I_ I_

e Lemma: A RB-Tree with n internal nodes has height at most
2log(n+1)
e Proof Sketch:
1. The subtree rooted at the node x contains at least
2bh(z) _ 1 internal nodes
2. For the root r, bh(r) > h/2, thus n > 2"/2 — 1. Taking
the root logs of both sides, we get that h < 2log(n + 1)

e Black-height of a node z, bh(x) is the number of black nodes
on any path from, but not including z down to a leaf node.

e Note that the black-height of a node is well-defined since all
paths have the same number of black nodes

e The black-height of an RB-Tree is just the black-height of

i ?
— Proof —_ — Maintenance?

1) The subtree rooted at the node z contains at least 20%(z) — 1
internal nodes. Show by induction on the height of x.

e BC: If the height of = is 0, then z is a leaf, and subtree
rooted at z does indeed contain 20 — 1 = 0 internal nodes

e IH: For all nodes y of height less than z, the subtree rooted e How do we ensure that the Red-Black Properties are main-
at y contains at least 2°#(¥) — 1 internal nodes. tained?

e IS: Consider a node x which is an internal node with two e I.e. when we insert a new node, what do we color it? How do
children(all internal nodes have two children). Each child we re-arrange the new tree so that the Red-Black Property
has black-height of either bh(z) or bh(z) — 1 (the former if holds?
it is red, the latter if it is black). Since the height of these e How about for deletions?

children is less than x, we can apply the inductive hypothesis
to conclude that each child has at least 2Y%(#)=1 _ 1 internal
nodes. This implies that the subtree rooted at = has at least
(20n(x)=1 _ 1) 4 (2bh(x)=1 _ 1) 4 1 = 2bh(2) _ 1 internal nodes.
This proves the claim.

o Left-Rotate —— o Picture ——

o Left-Rotate(x) takes a node z and ‘rotates” z with its right
child

e Right-Rotate is the symmetric operation

e Both Left-Rotate and Right-Rotate preserve the BST Prop-

erty
e We'll use Left-Rotate and Right-Rotate in the RB-Insert pro-
cedure
8 | 9
L Example —— L Binary Search Tree Property

e Let x be a node in a binary search tree. If y is @ node in the
left subtree of z, then key(y)<key(x). If y is a node in the
right subtree of z then key(y)>key(x)

10I 11I

—— In-Class Exercise ——

Show that Left-Rotate(x) maintains the BST Property. In other
words, show that if the BST Property was true for the tree
before the Left-Rotate(x) operation, then it's true for the tree
after the operation.

e Show that after rotation, the BST property holds for the
entire subtree rooted at x

e Show that after rotation, the BST property holds for the
subtree rooted at y

e Now argue that after rotation, the BST property holds for
the entire tree

- RB-Insert(T,z) ———

1. Set left(z) and right(z) to be NIL

2. Let y be the last node processed during a search for z in T

3. Insert z as the appropriate child of y (left child if key(z)<'y,
right child otherwise)

4. Color z red

5. Call the procedure RB-Insert-Fixup

12 | 13 |
S RB-Insert-Fixup(T,z) —— —— Case 1 —
RB-Insert-Fixup(T,z){
while (color(p(z)) is red){
case 1: z’s uncle, y, is red{
do case 1 /o/o\y
} K ﬁ
case 2: z’s uncle, y, is black and z is a right child{ o
do case 2
}
case 3: z’s uncle, y, is black and z is a left child{ 0/0}
do case 3 & ’
} o
} N
color(root(T)) = black;
}
14 15

— Case 2 and 3 —— — Loop Invariant ——

At the start of each iteration of the loop:

e Node z is red

T’C ez” e If parent(z) is the root, then parent(z) is black

3 e If there is a violation of the red-black properties, there is at
i most one violation, and it is either property 2 or 4. If there is

a violation of property 2, it occurs because z is the root and

is red. If there is a violation of property 4, it occurs because

20N 4w both z and parent(z) are red.
16 | 17 |
Pseudocode — Other Balanced BSTs —
I_ I_

e Detailed Pseudocode for RB-Insert and RB-Insert-Fixup is in

the book, Chapter 13.3 e We'll now briefly discuss some other balanced BSTs
e A detailed proof of correctness for RB-Insert-Fixup in the the e They all implement Insert, Delete, Lookup, Successor, Pre-
same Chapter decessor, Maximum and Minimum efficiently

e Code for RB-Deletion is also in Chapter 13

18I 19|

—— AVL Trees — —— AVL Trees —

e Claim: An AVL tree with n nodes has height O(logn)
e QQ: For an AVL tree of height h, how many nodes must it

have in it?
e An AVL tree is height-balanced: For each node z, the heights ° A:. We can write a recurrence relation. .Let T(h) be the
of the left and right subtrees of z differ by at most 1 minimum number of nodes in a tree of height h
e Each node has an additional height field h(z) e Then T'(h) =T(h-1)+T(h-2)+1, T(2) =T(1) > 1
e Claim: An AVL tree with n nodes has height O(logn) e This is similar to the recurrence relation for Fibonnaci num-
bers! Solution:
h
1 /1 5
T(h) = —= Lf _92
V5 2
20 | 21
— AVL Trees — — AVL Tree Insertion —
e So we have the equation n > T'(h). Let ¢ = 1"‘2\/5. Then:
1
n > 7(¢) -2 (1)
5 1 e After insert into an AVL tree, the tree may no longer be
logn > Iog(T) + hlogg —1 (2) height-balanced
1 > e Need to “fix-up” the subtrees so that they become height-
logn — |09(ﬁ) +1 > hlogg (3) balanced again
Cxlogn > h (4) e Can do this using rotations (similar to case for RB-Trees)

. . . . Similar story for deletions
e Where the final inequality holds for appropriate constant C,

and for n large enough. The final inequality implies that
h = O(logn)

22| 23I

—— B-Trees —_ —— Disk Accesses —

e Consider any search tree

e B-Trees are balanced search trees designed to work well on e The number of disk accesses per search will dominate the

(EllalsiS t binary trees: each nod h un time
¢ r;_lcjees are no Inary trees. €ach node can have many e Unless the entire tree is in memory, there will usually be a
children

disk access every time an arbitrary node is examined

e The number of disk accesses for most operations on a B-tree
is proportional to the height of the B-tree

e I.e. The info on each node of a B-tree can be stored in main
memory

e Each node of a B-Tree contains several keys, not just one

e \When doing searches, we decide which child link to follow by
finding the correct interval of our search key in the key set
of the current node.

24 25

B-Tree Properties —— B-Tree PropertiesS ——

— —

The following is true for every node x e All leaves have the same depth
e Lower and upper bounds on the number of keys a node can

contain. Given as a function of a fixed integer ¢

— Every node other than the root must have > (¢t — 1) keys,
and t children. If the tree is non-empty, the root must
have at least one key (and 2 children)

— Every node can contain at most 2¢t—1 keys, so any internal
node can have at most 2t children

e x stores keys, keyi(x),...key;(x) in sorted order (nondecreas-
ing)

e x contains pointers, ci(x),...,¢41(x) to its children

e Let k; be any key stored in the subtree rooted at the i-th child
of z, then ky < keyy(z) < ko < keyo(x) --- < key(x) < kjyq

26I 27|

—— Note ——— —— In-Class Exercise ——

We will now show that for any B-Tree with height h and n keys,

h < log; "Ft, where t > 2.

e The above properties imply that the height of a B-tree is no Consider a B-Tree of height h > 1
more than log; “F1, for t > 2, where n is the number of keys.

e If we make t, larger, we can save a larger (constant) fraction e Q1: What is the minimum number of nodes at depth 1, 2,
over RB-trees in the number of nodes examined and 3

e A (2-3-4)-tree is just a B-tree with t =2 e Q2: What is the minimum number of nodes at depth i?

e Q3: Now give a lowerbound for the total number of keys
(e.g. n>777)

e Q4: Show how to solve for h in this inequality to get an
upperbound on h

28 29

Splay Trees — SKip Lists ——

— —

A Splay Tree is a kind of BST where the standard operations

run in O(logn) amortized time

e This means that over [operations (e.g. Insert, Lookup,
Delete, etc), where [is sufficiently large, the total cost is
O(l *logn)

e In other words, the average cost per operation is O(logn)

e However a single operation could still take O(n) time

e In practice, they are very fast

e Technically, not a BST, but they implement all of the same
operations

e Very elegant randomized data structure, simple to code but
analysis is subtle

e They guarantee that, with high probability, all the major op-
erations take O(logn) time

e We'll discuss them more next class

30 | 31 |

High Level AnalysiS —

—

Comparison of various BSTs

RB-Trees: + guarantee O(logn) time for each operation,
easy to augment, — high constants

AVL-Trees: 4+ guarantee O(logn) time for each operation,
— high constants

B-Trees: + works well for trees that won't fit in memory, —
inserts and deletes are more complicated

Splay Tress: + small constants, — amortized guarantees only
Skip Lists: + easy to implement, — runtime guarantees are
probabilistic only

Which Data Structure to use? —

——

Splay trees work very well in practice, the “hidden constants”
are small

Unfortunately, they can not guarantee that every operation
takes O(logn)

When this guarantee is required, B-Trees are best when the
entire tree will not be stored in memory

If the entire tree will be stored in memory, RB-Trees, AVL-
Trees, and Skip Lists are good

