
CS 561, Lecture 14

Jared Saia

University of New Mexico

Today’s Outline

• Longest Common Subsequence

• Intro to Greedy Algs

1

Subsequence Definition

• Assume given sequence X = 〈x1, x2, . . . , xm〉
• Let Z = 〈z1, z2, . . . , zl〉
• Then Z is a subsequence of X if there exists a strictly in-

creasing sequence 〈i1, i2, . . . , ik〉 of indices such that for all

j = 1,2, . . . , k, xij = zj

2

Example

• Let X = 〈A, B, C, B, A, B, D, C〉,
• Z = 〈A, C, A, B, C〉
• Then, Z is a subsequence of X

3



Common Subsequence

• Given two sequences X and Y , we say that Z is a common

subsequence of X and Y if Z is a subsequence of X and Z is

a subsequence of Y

• Example: X = 〈A, B, D, C, B, A, B, C〉, Y = 〈A, D, B, C, D, B, A, B〉
• Then Z = 〈A, B, B, A, B〉 is a common subsequence

• Z is not a longest common subsequence(LCS) of X and Y

though since the common subsequence Z′ = 〈A, B, C, B, A, B〉
is longer

• Q: Is Z′ a longest common subsequence?

4

LCS Problem

• We are given two sequences X = 〈x1, x2, . . . , xm〉 and Y =

〈y1, y2, . . . , yn〉
• Goal: Find a maximum-length common subsequence of X

and Y

5

Brute Force

• Brute Force approach is to enumerate all possible subse-

quences of X, check to see if its a subsequence of Y , and

then keep track of the longest common subsequence of both

X and Y

• This is slow.

• Q: How many subsequences of X are there?

6

Terminology

• Given a sequence X = 〈x1, x2, . . . xm〉, for i = 0,1, . . . , m, let

Xi be the i-th prefix of X i.e. Xi = 〈x1, x2, . . . , xi〉
• Example: if X = 〈A, B, D, C〉, X0 = 〈〉 and X3 = 〈A, B, D〉

7



Optimal Substructure

Lemma 1: Let X = 〈x1, x2, . . . , xm〉 and let Y = 〈y1, y2, . . . , yn〉 be

sequences and let Z = 〈z1, z2, . . . , zk〉 be any LCS of X and Y .

Then:

• If xm = yn, then zk = xm = yn and Zk−1 is a LCS of Xm−1

and Yn−1

• If xm 6= yn, then zk 6= xm implies that Z is a LCS of Xm−1

and Y

• If xm 6= yn, then zk 6= yn implies that Z is an LCS of X and

Yn−1

8

In-Class Exercise

• Prove each of the three statements in the previous slide

• Hint: Use proof by contradiction

9

Recursive Solution

• Let X = 〈x1, x2, . . . , xm〉 and Y = 〈y1, y2, . . . , yn〉 be arbitrary

sequences

• Based on Lemma 1, there are two main possibilities for the

LCS of X and Y :

– If xm = yn, LCS(X, Y ) is LCS(Xm−1, Yn−1) appended to

xm = yn

– Otherwise, either LCS(X, Y ) is LCS(Xm−1, Y ) or LCS(X, Yn−1)

(whichever is larger)

10

Recursive solution

• Let c(i, j) be the length of an LCS of the sequence Xi, Yj

• Note that c(i, j) = 0 if i or j is 0

• Thus we have:

c(i, j) = 0 if i = 0 or j = 0
c(i, j) = c(i− 1, j − 1) + 1 if i, j > 0 and xi = yj
c(i, j) = max(c(i, j − 1), c(i− 1, j)) if i, j > 0 and xi 6= yj

11



DP Solution

• This is already enough to write up a recursive function, how-

ever the naive recursive function will take exponential time

• Instead, we can use dynamic programming and solve from

the bottom up

• Code for doing this is on p. 353 and 355 of the text, basically

it uses the same ideas we’ve seen before of filling in entries

in a table from the bottom up.

12

Example

• Consider X = 〈A, B, D, C, B, A, B, C〉, Y = 〈A, D, B, C, D, B, A, B〉
• The next slide gives the table constructed by the DP algo-

rithm for computing the LCS of X and Y

• The bold numbers represent one possible path giving a LCS.

• The arrows keep track of where the minimum is obtained

from

13

Example

A B D C B A B C
0 0 0 0 0 0 0 0 0
↘ ↘

A 0 1→1→1→1→1→1→1→1
↓ ↓↘

D 0 1 1 2→2→2→2→2→2
↓↘ ↘ ↘

B 0 1 2→2→2 3→3→3→3
↓ ↓ ↓↘ ↓ ↓ ↓

C 0 1 2→2 3→3→3→3→4
↓ ↓↘ ↓ ↓ ↓ ↓ ↓

D 0 1 2 3→3→3→3→3 4
↓↘↓ ↓ ↓↘ ↘ ↓

B 0 1 2 3→3 4→4→4→4
↘↓ ↓ ↓ ↓ ↓↘

A 0 1 2 3→3 4 5→5→5
↓↘↓ ↓ ↓↘↓ ↓↘

B 0 1 2 3→3 4 5 6→6

14

Reconstruction

• To find a reconstruction, first find a path of edges leading

from the bottom right corner to the top left corner

• In this path, the target of each diagonal arrow gives a char-

acter to include in the LCS

• In our example, 〈A, B, C, B, A, B〉 is the LCS we get by fol-

lowing the edges along the only path from the bottom right

to the top left

15



Take Away

• We’ve seen four different DP type algorithms

• In each case, we did the following 1) found a recurrence for

the solution 2) built solutions to the recurrence from the

bottom up

• You should be prepared to do this on your own now!

16

Greedy Algorithms

“Greed is Good” - Michael Douglas- in Wall Street

• A greedy algorithm always makes the choice that looks best

at the moment

• Greedy algorithms do not always lead to optimal solutions,

but for many problems they do

• In the next week or two, we will see several problems for

which greedy algorithms produce optimal solutions including:

activity selection, fractional knapsack, and making change

• When we study graph theory, we will also see that greedy

algorithms work well for computing shortest paths and finding

minimum spanning trees.

17

Activity Selection

• You are given a list of programs to run on a single processor

• Each program has a start time and a finish time

• However the processor can only run one program at any given

time, and there is no preemption (i.e. once a program is

running, it must be completed)

18

Another Motivating Problem

• Suppose you are at a film fest, all movies look equally good,

and you want to see as many complete movies as possible

• This problem is also exactly the same as the activity selection

problem.

19



Example

Imagine you are given the following set of start and stop times

for activities

- time

20

Ideas

• There are many ways to optimally schedule these activities

• Brute Force: examine every possible subset of the activites

and find the largest subset of non-overlapping activities

• Q: If there are n activities, how many subsets are there?

• The book also gives a DP solution to the problem

21

Greedy Activity Selector

1. Sort the activities by their finish times

2. Schedul the first activity in this list

3. Now go through the rest of the sorted list in order, scheduling

activities whose start time is after (or the same as) the last

scheduled activity

(note: code for this algorithm is in section 16.1)

22

Greedy Algorithm

Sorting the activities by their finish times

- time

23



Greedy Scheduling of Activities

- time

24

Analysis

• Let n be the total number of activities

• The algorithm first sorts the activities by finish time taking

O(n logn)

• Then the algorithm visits each activity exactly once, doing a

constant amount of work each time. This takes O(n)

• Thus total time is O(n logn)

25

Optimality

• The big question here is: Does the greedy algorithm give us

an optimal solution???

• Surprisingly, the answer turns out to be yes

26

Todo

• Finish Chapter 15

• Start Chapter 16

27


