—— Today's Outline ——

CS 561, Lecture 18

) e Dynamic Tables
Jared Saia

University of New Mexico

L Pseudocode —_ L Potential Method ——

Table-Insert(T,x){
if (T.size == 0){allocate T with 1 slot;T.size=1}
if (T.num == T.size){

allocate newTable with 2*T.size slots; e Let's now analyze Table-Insert using the potential method
insert all items in T.table into newTable; e Let num; be the num value for the i-th call to Table-Insert
T.table = newTable; e Let size; be the size value for the i-th call to Table-Insert
T.size = 2*T.size e Then let
} b, = 2 % num,; — size;

T.table[T.num] = x;

T.num++

— In Class Exercise —— — Table Delete ——

Recall that a; = ¢; + d)z' — (Di—l

We've shown that a Table-Insert has O(1) amortized cost
To implement Table-Delete, it is enough to remove (or zero
out) the specified item from the table

e However it is also desirable to contract the table when the
load factor gets too small

Storage for old table can then be freed to the heap

e Show that this potential function is O initially and always
nonnegative

e Compute a; for the case where Table-Insert does not trigger
an expansion

e Compute a; for the case where Table-Insert does trigger an
expansion (note that num;_1 = num; —1, size;_1 = num; —1,

size; = 2 % (num; — 1))

Desirable Properties —— Naive Strategy —

| I —
We want to preserve two properties: e A natural strategy for expansion and contraction is to double
table size when an item is inserted into a full table and halve
e the load factor of the dynamic table is lower bounded by the size when a deletion would cause the table to become
some constant less than half full
e the amortized cost of a table operation is bounded above by e This strategy guarantees that load factor of table never drops
a constant below 1/2

D'Oh ——

Unfortunately this strategy can cause amortized cost of an
operation to be large

Assume we perform n operations where n is a power of 2
The first n/2 operations are insertions

At the end of this, T.num = T.size = n/2

Now the remaining n/2 operations are as follows:

I,D,D,1,I,D,D,1,1,...

where I represents an insertion and D represents a deletion

——

AnalysisS —

Note that the first insertion causes an expansion

The two following deletions cause a contraction

The next two insertions cause an expansion again, etc., etc.
The cost of each expansion and deletion is ©(n) and there
are ©(n) of them

Thus the total cost of n operations is ©(n?) and so the
amortized cost per operation is ©(n)

The Solution ——

—

The Problem: After an expansion, we don’'t perform enough
deletions to pay for the contraction (and vice versa)

e The Solution: We allow the load factor to drop below 1/2
e In particular, halve the table size when a deletion causes the

table to be less than 1/4 full
We can now create a potential function to show that Inser-
tion and Deletion are fast in an amortized sense

10

Recall: Load Factor ——

—

For a nonempty table T, we define the “load factor” of T,
a(T), to be the number of items stored in the table divided
by the size (number of slots) of the table

We assign an empty table (one with no items) size 0 and
load factor of 1

Note that the load factor of any table is always between 0
and 1

Further if we can say that the load factor of a table is always
at least some constant ¢, then the unused space in the table
is never more than 1 —c¢

11

—— The Potential ——— —— Intuition ———

e Note that when a = 1/2, the potential is O

o(1) = { 2« T.num — T.size if o(T) > 1/2 } e When the load factor is 1 (T.size = T.num), ®(T) = T.num,
T.size/2 — Tnum if a(T) < 1/2 so the potential can pay for an expansion

e When the load factor is 1/4, T.size = 4xT.num, which means

e Note that this potential is legal since ©(0) = 0 and (you can ®(T) = T.num, so the potential can pay for a contraction if

prove that) ®(:i) > 0 for all ¢ an item is deleted
12 | 13 |
Analysis — Table Insert —__
— Y —

e Let's now role up our sleeves and show that the amortized o If o;_1 > 1/2, analysis is identical to the analysis done in the
costs of insertions and deletions are small In-Class Exercise - amortized cost per operation is 3

e We'll do this by case analysis o If a;_1 < 1/2, the table will not expand as a result of the

e Let num,; be the number of items in the table after the ¢-th operation
operation, size; be the size of the table after the i-th opera- e There are two subcases when o;_1 < 1/2: 1) o3 < 1/2 2)
tion, and «; denote the load factor after the i-th operation a; >1/2

14 15 |

I_ai<1/2_ |—Oéz'21/2—
a; = ¢+ ;- P (5)
e In this case, we have = 14 (2 *num; — size;) — (size;_1/2 — num;_1) (6)
a; = cj+d;— ;4 (1) = 14 (2% (numé_l + 1) — size; 1) — (size;_1/2 — num; _(7J)
= 1+ (size;/2 — num;) — (size;_1/2 —num;_1) (2) = 3*numj_1 — 58i26i71 +3 (8)
=1 ize; /2 —) — (size; /2 — i — 1 3 3
+ (size;/2 — num;) — (size;/2 — (num; — 1)) (3) — Bwayqwsize, 1 — Ssizer 1+ 3 (9)
=0 (4) 3 3 2
< > * Size;_1 — Esizei_l +3 (10)
= 3 (11)
16 | 17
Take Away — Deletions —
 — y —
e SO we've just show that in all cases, the amortized cost of e For deletions, num; = num;_1 — 1
an insertion is 3 e We will look at two main cases: 1) o;_1 < 1/2and 2) a;_1 >
e We did this by case analysis 1/2
e What remains to be shown is that the amortized cost of e For the case where o;_1 < 1/2, there are two subcases: 1a)
deletion is small the ¢-th operation does not cause a contraction and 1b) the
e We'll also do this by case analysis i-th operation does cause a contraction
18 | 19 |

—— Case 13 —

o If a;_1 < 1/2 and the i-th operation does not cause a con-
traction, we know size; = size;_1 and we have:

Case 1b

——

e In this case, a;_1 < 1/2 and the i-th operation causes a
contraction.
e We know that: ¢; = num,; + 1

e and size;/2 = size;_1/4 = num;_1 = num; + 1. Thus:

a; = ¢+ P — D (12)
= 1+ (size;/2 —num;) — (size;_1/2 — num;_1) (13) a; = ¢+ P —P;_1 (
1+ (size;/2 — num;) — (size; /2 — (num; + 1)) (14) (num; + 1) + (size;/2 — num;) — (size;_1/2 — num;_1) (
= 2 (15) = (num; + 1) + ((num; + 1) — num;) — ((2num; + 2) — (num,; K
=1 (
20 21 |
— Case 2 L Take Away —

e In this case, a;_1>1/2

e Proving that the amortized cost is constant for this case is
left as an exercise to the diligent student

e Hintl: Q: In this case is it possible for the i-th operation to
be a contraction? If so, when can this occur? Hint2: Try a
case analysis on «;.

22

e Since we've shown that the amortized cost of every operation
is at most a constant, we've shown that any sequence of n
operations on a Dynamic table take O(n) time

e Note that in our scheme, the load factor never drops below

1/4

e This means that we also never have more than 3/4 of the
table that is just empty space

23I

Disjoint Sets —— Operations ——

I_ I_

We want to support the following operations:

e Make-Set(x): creates a new set whose only member (and
representative) is x

e Union(x,y): unites the sets that contain =z and y (call them
Sz and Sy) into a new set that is S; USy. The new set is
added to the data structure while Sy and Sy are deleted. The
representative of the new set is any member of the set.

e Find-Set(x): Returns a pointer to the representative of the
(unique) set containing =

e A disjoint set data structure maintains a collection {S1,S2,...S;}
of disjoint dynamic sets

e Each set is identified by a representative which is a member
of that set

e Let's call the members of the sets objects.

24 25

Analysis — Analysis —

— —

e We will analyze this data structure in terms of two parame-

ters:

1. n, the number of Make-Set operations

2. m, the total number of Make-Set, Union, and Find-Set
operations

Since the sets are always disjoint, each Union operation re-

duces the number of sets by 1

So after n — 1 Union operations, only one set remains

Thus the number of Union operations is at most n — 1

e Note also that since the Make-Set operations are included in
the total number of operations, we know that m > n

e We will in general assume that the Make-Set operations are
the first n performed

26I 27|

Application ——

—

e Consider a simplified version of Myspace

e Every person is an object and every set represents a social
cligue

e Whenever a person in the set S1 forges a link to a person in
the set S5, then we want to create a new larger social clique
S1 US> (and delete S; and S5)

e We might also want to find a representative of each set, to
make it easy to search through the set

e For obvious reasons, we want these operation of Union,
Make-Set and Find-Set to be as fast as possible

28

