—— Outline —

CS 561, Lecture 24
e All Pairs Shortest Paths

Jared Saia e TSP Approximation Algorithm
University of New Mexico

1
C All-Pairs Shortest Paths —— L Example ——
e For the single-source shortest paths problem, we wanted to
find the shortest path from a source vertex s to all the other
vertices in the graph
o We will now generalize this problem further to that of finding e For any vertex v, we have dist(v,v) = 0 and pred(v,v) =
the shortest path from every possible source to every possible NULL
destination e If the shortest path from u to v is only one edge long, then
e In particular, for every pair of vertices v and v, we need to dist(u,v) = w(u — v) and pred(u,v) = u
compute the following information: e If there's no shortest path from u to v, then dist(u,v) = oo
— dist(u,v) is the length of the shortest path (if any) from and pred(u,v) = NULL
u to v

— pred(u, v) is the second-to-last vertex (if any) on the short-
est path (if any) from u to v




APSP —— Lots of Single Sources ——

e The output of our shortest path algorithm will be a pair of
|V| x |[V| arrays encoding all |[V|? distances and predecessors.

e Many maps contain such a distance matric - to find the
distance from (say) Albuquerque to (say) Ruidoso, you look
in the row labeled “Albuquerque’” and the column labeled
“Ruidoso”

e In this class, we'll focus only on computing the distance array

e The predecessor array, from which you would compute the
actual shortest paths, can be computed with only minor ad-
ditions to the algorithms presented here

e Most obvious solution to APSP is to just run SSSP algorithm
|V times, once for every possible source vertex

e Specifically, to fill in the subarray dist(s, x), we invoke either
Dijkstra's or Bellman-Ford starting at the source vertex s

e We'll call this algorithm ObviousAPSP

4 1 5 1
ObviousAPSP Analysis —
— — ~nay
e The running time of this algorithm depends on which SSSP
ObviousAPSP(V,E,w){ algorithm we use
for every vertex s{ e If we use Bellman-Ford, the overall running time is O(|V[?|E|) =
dist(s,*) = SSSP(V,E,w,s); oV

} e If all the edge weights are positive, we can use Dijkstra’s in-

} stead, which decreases the run time to ©(|V||E|+|V|?log |V|) =

o(IV[*)




—— Problem —— —— Dynamic Programming ———

e We'd like to have an algorithm which takes O(]V|3) but which
can also handle negative edge weights

o We'll see that a dynamic programming algorithm, the Floyd
Warshall algorithm, will achieve this

e Note: the book discusses another algorithm, Johnson’s al-
gorithm, which is asymptotically better than Floyd Warshall ) 0 ifu=w
on sparse graphs. However we will not be discussing this dist(u,v) = {minx (dz'st(u,a:) —|—w(:c—>v)) otherwise
algorithm in class.

e Recall: Dynamic Programming = Recursion 4+ Memorization

e Thus we first need to come up with a recursive formulation
of the problem

e We might recursively define dist(u,v) as follows:

The problem — The solution ——

— —

e To avoid this circular dependency, we need some additional

e In other words, to find the shortest path from u to v, try all
possible predecessors x, compute the shortest path from u
to z and then add the last edge v — v

Unfortunately, this recurrence doesn’t work

To compute dist(u,v), we first must compute dist(u,z) for
every other vertex z, but to compute any dist(u,z), we first
need to compute dist(u,v)

We're stuck in an infinite loop!

10I

parameter that decreases at each recursion and eventually
reaches zero at the base case

One possibility is to include the number of edges in the short-
est path as this third magic parameter

So define dist(u,v,k) to be the length of the shortest path
from u to v that uses at most k edges

Since we know that the shortest path between any two ver-
tices uses at most |V| — 1 edges, what we want to compute
is dist(u,v,|V]|—1)

11




—— The Recurrencé ——— —— The Algorithm ——

e It's not hard to turn this recurrence into a dynamic program-
ming algorithm
e Even before we write down the algorithm, though, we can

0 ifu=wv tell that its running time will be ©(|V|*%)
dist(u,v, k) = { oo if k=0and u*v e This is just because the recurrence has four variables — u,
ming (dist(u,x,k -1 4wz — v)) otherwise v, k and x — each of which can take on |V| different values

e Except for the base cases, the algorithm will just be four
nested “for” loops

12 13

L DP-APSP —_ — The Problem ——

DP-APSP(V,E,w){
for all vertices u in V{
for all vertices v in V{
if (u=v)
dist(u,v,0)
else

0; e This algorithm still takes O(|V|#) which is no better than the

ObviousAPSP algorithm

e If we use a certain divide and conquer technique, there is a
way to get this down to O(|V|3log |V|) (think about how you
might do this)

e However, to get down to O(|V|3) run time, we need to use
a different third parameter in the recurrence

dist(u,v,0) = infinity;
i3
for k=1 to |V|-1{
for all vertices u in V{
for all vertices u in V{
dist(u,v,k) = infinity;
for all vertices x in V{
if (dist(u,v,k)>dist(u,x,k-1)+w(x,v))
dist(u,v,k) = dist(u,x,k-1)+w(x,v);
3333

14 15




—— Floyd-Warshall ——

e Number the vertices arbitrarily from 1 to |V]|

e Define dist(u,v,r) to be the shortest path from u to v where
all intermediate vertices (if any) are numbered r or less

e If » = 0, we can't use any intermediate vertices so shortest
path from u to v is just the weight of the edge (if any)
between v and v

e If » > 0O, then either the shortest legal path from u to v goes
through vertex r or it doesn't

e We need to compute the shortest path distance from u to v
with no restrictions, which is just dist(u,v,|V])

16

—— The recurrencé ———

We get the following recurrence:

w(u — v) ifr=0
dist(u,v,r) = ¢ min{dist(u,v,r — 1),
dist(u,r,7 — 1) 4+ dist(r,v,7 — 1)} otherwise

17

— The Algorithm —

FloydWarshall(V,E,w){
for u=1 to [VI{
for v=1 to IVI{
dist(u,v,0) = w(u,v);
3
for r=1 to |VI{
for u=1 to |VI{
for v=1 to |VI{
if (dist(u,v,r-1) < dist(u,r,r-1) + dist(r,v,r-1))
dist(u,v,r) = dist(u,v,r-1);
else
dist(u,v,r) = dist(u,r,r-1) + dist(r,v,r-1);

I3

18I

— Analysis —

e There are three variables here, each of which takes on |V|
possible values

e Thus the run time is ©(|V|3)

e Space required is also ©(|V|3)

19I




—— Take Away ——

e Floyd-Warshall solves the APSP problem in ©(|V|3) time
even with negative edge weights

e Floyd-Warshall uses dynamic programming to compute APSP

e We've seen that sometimes for a dynamic program, we need
to introduce an extra variable to break dependencies in the
recurrence.

e We've also seen that the choice of this extra variable can
have a big impact on the run time of the dynamic program

20

TSP ——

A version of the TSP problem is: “Given a weighted graph

G, what is the shortest Hamiltonian Cycle of G7"

e Where a Hamiltonian Cycle is a path that visits each node
in G exactly once and returns to the starting node

e This TSP problem is NP-Hard by a reduction from Hamilto-
nian Cycle

e However, there is a 2-approximation algorithm for this prob-

lem if the edge weights obey the triangle inequality

21

— Triangle Inequality ——

e In many practical problems, it's reasonable to make the as-
sumption that the weights, ¢, of the edges obey the triangle
inequality

e The triangle inequality says that for all vertices u,v,w € V:

c(u,w) < c(u,v) + c(v,w)

e In other words, the cheapest way to get from « to w is always
to just take the edge (u,w)

e In the real world, this is often a pretty natural assumption.
For example it holds if the vertices are points in a plane
and the cost of traveling between two vertices is just the
euclidean distance between them.

22

— Approximation Algorithm —

e Given a weighted graph G, the algorithm first computes a
MST for GG, T, and then arbitrarily selects a root node r of
T.

e It then lets L be the list of the vertices visited in a depth
first traversal of T starting at r.

e Finally, it returns the Hamiltonian Cycle, H, that visits the
vertices in the order L.

23I




—— Approximation Algorithm ———

Approx-TSP(G){
T = MST(G);
L = the list of vertices visited in a depth first traversal
of T, starting at some arbitrary node in T;

H = the Hamiltonian Cycle that visits the vertices in the

o
-
L3

Example Run ——

order L;
return H; The top left figure shows the graph G (edge weights are just
¥ the Euclidean distances between vertices); the top right figure
shows the MST T. The bottom left figure shows the depth
first walk on T, W = (a,b,c,b,h,b,a,d, e, f,e,g,¢e,d,a); the bottom
right figure shows the Hamiltonian cycle H obtained by deleting
repeat visits from W, H = (a,b,c, h,d,e, f,g).
24 25
Analysis — Analysis —
— Y — Y

An important fact about this algorithm is that: the cost of the

MST is less than the cost of the shortest Hamiltonian cycle.

e The first step of the algorithm takes O(|E| 4 |V]log |V]) (if
we use Prim's algorithm)

The second step is O(|V|)

The third step is O(|V]).

Hence the run time of the entire algorithm is polynomial

26I

To see this, let T be the MST and let Hx be the shortest
Hamiltonian cycle.
Note that if we remove one edge from H=x*, we have a span-

ning tree, 7’

Finally, note that w(Hx) > w(T") > w(T)

Hence w(Hx*) > w(T)

27I




—— Analysis — —— AnalysisS —

e Unfortunately, W is not a Hamiltonian cycle since it visits
some vertices more than once

e Now let W be a depth first walk of T which traverses each e However, we can delete a visit to any vertex and the cost will
edge exactly twice (similar to what you did in the hw) not increase because of the triangle inequality. (The path

e In our example, W = (a,b,c,b,h,b,a,d,e, f,e,g,e,d,a) without an intermediate vertex can only be shorter)

e Note that ¢(W) = 2¢(T) e By repeatedly applying this operation, we can remove from

e This implies that c¢(W) < 2c¢(Hx) W all but the first visit to each vertex, without increasing

the cost of W.
e In our example, this will give us the ordering H = (a, b, c, h,d,e, f, g)

28 | 29 1
Analysis — Take Away —
— Y . Y
e Many real-world problems can be shown to not have an effi-
e By the last slide, ¢(H) < ¢(W). cient solution unless P = NP (these are the NP-Hard prob-
e SO ¢(H) <c(W) =2¢(T) < 2c(H=x) lems)
e Thus, c¢(H) < 2c¢(H=*) e However, if a problem is shown to be NP-Hard, all hope is
e In other words, the Hamiltonian cycle found by the algorithm not lost!
has cost no more than twice the shortest Hamiltonian cycle. e In many cases, we can come up with an provably good ap-

proximation algorithm for the NP-Hard problem.

30 | 31 |




