

2

Example 2

• We can see that the *i*-th level of the tree sums to $(3/16)^i n^2$.

Example 2

- Let's solve the recurrence $T(n) = 3T(n/4) + n^2$
- Note: For simplicity, from now on, we'll assume that $T(i) =$ $\Theta(1)$ for all small constants i. This will save us from writing the base cases each time.
- $(n/16)^2$ $(n/16)^2$ n^2 $(n/4)^2$ (n/4)^{^2} $(n)(n)(n)$ (n/16)^2 $(n/16)^2$ $(n/16)^2$ $(n/16)^2$ $(n/16)^2$ $(n/16)^2$ $(n/16)^2$ $(n/4)^{2}$ n^2 $(3/16)n^2$ $(3/16)^{2*}n^2$... 8 • Further the depth of the tree is $\log_4 n$ $(n/4^d=1$ implies that $d = \log_4 n$ • So we can see that $T(n) = \sum_{i=0}^{\log_4 n} (3/16)^i n^2$ 9 Solution _____ $T(n) =$ log \sum (4 n $i=0$ $(3/16)^{i}n^2$ (5) $\langle n^2 \sum_{n=1}^{\infty} (3$ $i=0$ $(3/16)^i$ (6) $=\frac{1}{1-(3/16)}n^2$ (7) $= O(n^2)$) (8) Master Theorem $_____\$ • Divide and conquer algorithms often give us running-time recurrences of the form $T(n) = a T(n/b) + f(n)$ (9) • Where a and b are constants and $f(n)$ is some other function. • The so-called "Master Method" gives us a general method for solving such recurrences when $f(n)$ is a simple polynomial.

Master Theorem $_____\$ • Unfortunately, the Master Theorem doesn't work for all functions $f(n)$ • Further many useful recurrences don't look like $T(n)$ • However, the theorem allows for very fast solution of recurrences when it applies 12 Master Theorem $_____\$ • Master Theorem is just a special case of the use of recursion trees • Consider equation $T(n) = a T(n/b) + f(n)$ • We start by drawing a recursion tree 13 The Recursion Tree • The root contains the value $f(n)$ • It has a children, each of which contains the value $f(n/b)$ • Each of these nodes has a children, containing the value $f(n/b^2)$ • In general, level i contains a^i nodes with values $f(n/b^i)$ • Hence the sum of the nodes at the *i*-th level is $a^if(n/b^i)$ Details • The tree stops when we get to the base case for the recurrence • We'll assume $T(1) = f(1) = \Theta(1)$ is the base case • Thus the depth of the tree is $\log_b n$ and there are $\log_b n + 1$ levels

Recursion Tree

A "Log Fact" Aside

• Let $T(n)$ be the sum of all values stored in all levels of the tree: $T(n) = f(n) + a f(n/b) + a^2 f(n/b^2) + \cdots + a^i f(n/b^i) + \cdots + a^L f(n/b^L)$ • Where $L = \log_b n$ is the depth of the tree • Since $f(1) = \Theta(1)$, the last term of this summation is $\Theta(a^L)$ = $\Theta(a^{\log_b n}) = \Theta(n^{\log_b a})$ 16 • It's not hard to see that $a^{\log_b n} = n^{\log_b a}$ $a^{\log_b n} = n^{\log_b a}$ (10) $a^{\log_b n} = a^{\log_a n * \log_b a}$ (11) $\log_b n = \log_a n * \log_b a$ (12) • We get to the last eqn by taking log_a of both sides • The last eqn is true by our third basic log fact 17 Master Theorem _____ • We can now state the Master Theorem • We will state it in a way slightly different from the book • Note: The Master Method is just a "short cut" for the recursion tree method. It is less powerful than recursion trees. Master Method ______ The recurrence $T(n) = aT(n/b) + f(n)$ can be solved as follows: • If $af(n/b) \le Kf(n)$ for some constant $K < 1$, then $T(n) =$ $\Theta(f(n)).$ • If $af(n/b) \ge K f(n)$ for some constant $K > 1$, then $T(n) =$ $\Theta(n^{\log_b a})$. • If $af(n/b) = f(n)$, then $T(n) = \Theta(f(n) \log_b n)$.

Example _

- If $f(n)$ is a constant factor larger than $af(n/b)$, then the sum is a descending geometric series. The sum of any geometric series is a constant times its largest term. In this case, the largest term is the first term $f(n)$.
- If $f(n)$ is a constant factor smaller than $a f(n/b)$, then the sum is an ascending geometric series. The sum of any geometric series is a constant times its largest term. In this case, this is the last term, which by our earlier argument is $\Theta(n^{\log_b a})$.
- Finally, if $af(n/b) = f(n)$, then each of the $L + 1$ terms in the summation is equal to $f(n)$.
- $T(n) = T(3n/4) + n$
- If we write this as $T(n) = aT(n/b) + f(n)$, then $a = 1, b =$ $4/3, f(n) = n$
- Here $af(n/b) = 3n/4$ is smaller than $f(n) = n$ by a factor of 4/3, so $T(n) = \Theta(n)$

34

Example ______

 $\frac{1}{\sqrt{1-\frac{1$

If we apply operator $(L - 3)$ to sequence T above, it fails to annihilate T

$$
(\mathsf{L} - 3)T = \mathsf{L}T + (-3)T
$$

= $\langle 2^1, 2^2, 2^3, \dots \rangle + \langle -3 \times 2^0, -3 \times 2^1, -3 \times 2^2, \dots \rangle$
= $\langle (2-3) \times 2^0, (2-3) \times 2^1, (2-3) \times 2^2, \dots \rangle$
= $(2-3)T = -T$

What does (L-c) do to other sequences $A = \langle a_0 d^n \rangle$ when $d \neq c$?:

$$
(\mathsf{L} - c)A = (\mathsf{L} - c)\langle a_0, a_0d, a_0d^2, a_0d^3, \cdots \rangle
$$

\n
$$
= \mathsf{L}\langle a_0, a_0d, a_0d^2, a_0d^3, \cdots \rangle - c\langle a_0, a_0d, a_0d^2, a_0d^3, \cdots \rangle
$$

\n
$$
= \langle a_0d, a_0d^2, a_0d^3, \cdots \rangle - \langle ca_0, ca_0d, ca_0d^2, ca_0d^3, \cdots \rangle
$$

\n
$$
= \langle a_0d - ca_0, a_0d^2 - ca_0d, a_0d^3 - ca_0d^2, \cdots \rangle
$$

\n
$$
= \langle (d - c)a_0, (d - c)a_0d, (d - c)a_0d^2, \cdots \rangle
$$

\n
$$
= (d - c)\langle a_0, a_0d, a_0d^2, \cdots \rangle
$$

\n
$$
= (d - c)A
$$

38

