
CS 561, Lecture 3

Jared Saia

University of New Mexico

Today’s Outline

“Listen and Understand! That terminator is out there. It can’t

be bargained with, it can’t be reasoned with! It doesn’t feel pity,

remorse, or fear. And it absolutely will not stop, ever, until you

are dead!” - The Terminator

• Guess and Check with Inequalities

• Solving Recurrences using Recursion Trees

• Solving Recurrences using the Masters Method

• Solving Recurrences using Annihilators

1

Recurrences and Inequalities

• Often easier to prove that a recurrence is no more than some

quantity than to prove that it equals something

• Consider: f(n) = f(n− 1) + f(n− 2), f(1) = f(2) = 1

• “Guess” that f(n) ≤ 2n

2

Inequalities (II)

Goal: Prove by induction that for f(n) = f(n − 1) + f(n − 2),

f(1) = f(2) = 1, f(n) ≤ 2n

• Base case: f(1) = 1 ≤ 21, f(2) = 1 ≤ 22

• Inductive hypothesis: For all j < n, f(j) ≤ 2j

• Inductive step:

f(n) = f(n− 1) + f(n− 2) (1)

≤ 2n−1 + 2n−2 (2)

< 2 ∗ 2n−1 (3)

= 2n (4)

3



Recursion-tree method

• Each node represents the cost of a single subproblem in a

recursive call

• First, we sum the costs of the nodes in each level of the tree

• Then, we sum the costs of all of the levels

4

Recursion-tree method

• Can use to get a good guess which is then refined and verified

using substitution method

• Best method (usually) for recurrences where a term like

T (n/c) appears on the right hand side of the equality

5

Example 1

• Consider the recurrence for the running time of Mergesort:

T (n) = 2T (n/2) + n, T (1) = O(1)

n

n/2 n/2

n/4 n/4 n/4 n/4

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

n

n

n

n

6

Example 1

• We can see that each level of the tree sums to n

• Further the depth of the tree is logn (n/2d = 1 implies that

d = logn).

• Thus there are logn + 1 levels each of which sums to n

• Hence T (n) = Θ(n logn)

7



Example 2

• Let’s solve the recurrence T (n) = 3T (n/4) + n2

• Note: For simplicity, from now on, we’ll assume that T (i) =

Θ(1) for all small constants i. This will save us from writing

the base cases each time.

(n/16)^2 (n/16)^2

n^2

(n/4)^2 (n/4)^2

(n/16)^2

(n/4)^2

(n/16)^2 (n/16)^2 (n/16)^2 (n/16)^2 (n/16)^2 (n/16)^2

n^2

(3/16)n^2

(3/16)^2*n^2

...

8

Example 2

• We can see that the i-th level of the tree sums to (3/16)in2.

• Further the depth of the tree is log4 n (n/4d = 1 implies that

d = log4 n)

• So we can see that T (n) =
∑log4 n

i=0 (3/16)in2

9

Solution

T (n) =
log4 n∑
i=0

(3/16)in2 (5)

< n2
∞∑

i=0

(3/16)i (6)

=
1

1− (3/16)
n2 (7)

= O(n2) (8)

10

Master Theorem

• Divide and conquer algorithms often give us running-time

recurrences of the form

T (n) = a T (n/b) + f(n) (9)

• Where a and b are constants and f(n) is some other function.

• The so-called “Master Method” gives us a general method

for solving such recurrences when f(n) is a simple polynomial.

11



Master Theorem

• Unfortunately, the Master Theorem doesn’t work for all func-

tions f(n)

• Further many useful recurrences don’t look like T (n)

• However, the theorem allows for very fast solution of recur-

rences when it applies

12

Master Theorem

• Master Theorem is just a special case of the use of recursion

trees

• Consider equation T (n) = a T (n/b) + f(n)

• We start by drawing a recursion tree

13

The Recursion Tree

• The root contains the value f(n)

• It has a children, each of which contains the value f(n/b)

• Each of these nodes has a children, containing the value

f(n/b2)

• In general, level i contains ai nodes with values f(n/bi)

• Hence the sum of the nodes at the i-th level is aif(n/bi)

14

Details

• The tree stops when we get to the base case for the recur-

rence

• We’ll assume T (1) = f(1) = Θ(1) is the base case

• Thus the depth of the tree is logb n and there are logb n + 1

levels

15



Recursion Tree

• Let T (n) be the sum of all values stored in all levels of the

tree:

T (n) = f(n)+a f(n/b)+a2 f(n/b2)+· · ·+ai f(n/bi)+· · ·+aL f(n/bL)

• Where L = logb n is the depth of the tree

• Since f(1) = Θ(1), the last term of this summation is Θ(aL) =

Θ(alogb n) = Θ(nlogb a)

16

A “Log Fact” Aside

• It’s not hard to see that alogb n = nlogb a

alogb n = nlogb a (10)

alogb n = aloga n∗logb a (11)

logb n = loga n ∗ logb a (12)

• We get to the last eqn by taking loga of both sides

• The last eqn is true by our third basic log fact

17

Master Theorem

• We can now state the Master Theorem

• We will state it in a way slightly different from the book

• Note: The Master Method is just a “short cut” for the re-

cursion tree method. It is less powerful than recursion trees.

18

Master Method

The recurrence T (n) = aT (n/b) + f(n) can be solved as follows:

• If a f(n/b) ≤ Kf(n) for some constant K < 1, then T (n) =

Θ(f(n)).

• If a f(n/b) ≥ K f(n) for some constant K > 1, then T (n) =

Θ(nlogb a).

• If a f(n/b) = f(n), then T (n) = Θ(f(n) logb n).

19



Proof

• If f(n) is a constant factor larger than a f(n/b), then the sum

is a descending geometric series. The sum of any geometric

series is a constant times its largest term. In this case, the

largest term is the first term f(n).

• If f(n) is a constant factor smaller than a f(n/b), then the

sum is an ascending geometric series. The sum of any ge-

ometric series is a constant times its largest term. In this

case, this is the last term, which by our earlier argument is

Θ(nlogb a).

• Finally, if a f(n/b) = f(n), then each of the L + 1 terms in

the summation is equal to f(n).

20

Example

• T (n) = T (3n/4) + n

• If we write this as T (n) = aT (n/b) + f(n), then a = 1,b =

4/3,f(n) = n

• Here a f(n/b) = 3n/4 is smaller than f(n) = n by a factor of

4/3, so T (n) = Θ(n)

21

Example

• Karatsuba’s multiplication algorithm: T (n) = 3T (n/2) +

n

• If we write this as T (n) = aT (n/b) + f(n), then a = 3,b =

2,f(n) = n

• Here a f(n/b) = 3n/2 is bigger than f(n) = n by a factor of

3/2, so T (n) = Θ(nlog2 3)

22

Example

• Mergesort: T (n) = 2T (n/2) + n

• If we write this as T (n) = aT (n/b) + f(n), then a = 2,b =

2,f(n) = n

• Here a f(n/b) = f(n), so T (n) = Θ(n logn)

23



Example

• T (n) = T (n/2) + n logn

• If we write this as T (n) = aT (n/b) + f(n), then a = 1,b =

2,f(n) = n logn

• Here a f(n/b) = n/2 logn/2 is smaller than f(n) = n logn by

a constant factor, so T (n) = Θ(n logn)

24

In-Class Exercise

• Consider the recurrence: T (n) = 4T (n/2) + n lg n

• Q: What is f(n) and a f(n/b)?

• Q: Which of the three cases does the recurrence fall under

(when n is large)?

• Q: What is the solution to this recurrence?

25

In-Class Exercise

• Consider the recurrence: T (n) = 2T (n/4) + n lg n

• Q: What is f(n) and a f(n/b)?

• Q: Which of the three cases does the recurrence fall under

(when n is large)?

• Q: What is the solution to this recurrence?

26

Take Away

• Recursion tree and Master method are good tools for solving

many recurrences

• However these methods are limited (they can’t help us get

guesses for recurrences like f(n) = f(n− 1) + f(n− 2))

• For info on how to solve these other more difficult recur-

rences, review the notes on annihilators on the class web

page.

27



Intro to Annihilators

• Suppose we are given a sequence of numbers A = 〈a0, a1, a2, · · · 〉
• This might be a sequence like the Fibonacci numbers

• I.e. A = 〈a0, a1, a2, . . . ) = (T (1), T (2), T (3), · · · 〉

28

Annihilator Operators

We define three basic operations we can perform on this se-

quence:

1. Multiply the sequence by a constant: cA = 〈ca0, ca1, ca2, · · · 〉
2. Shift the sequence to the left: LA = 〈a1, a2, a3, · · · 〉
3. Add two sequences: if A = 〈a0, a1, a2, · · · 〉 and B = 〈b0, b1, b2, · · · 〉,

then A + B = 〈a0 + b0, a1 + b1, a2 + b2, · · · 〉

29

Annihilator Description

• We first express our recurrence as a sequence T

• We use these three operators to “annihilate” T , i.e. make it

all 0’s

• Key rule: can’t multiply by the constant 0

• We can then determine the solution to the recurrence from

the sequence of operations performed to annihilate T

30

Example

• Consider the recurrence T (n) = 2T (n− 1), T (0) = 1

• If we solve for the first few terms of this sequence, we can

see they are 〈20,21,22,23, · · · 〉
• Thus this recurrence becomes the sequence:

T = 〈20,21,22,23, · · · 〉

31



Example (II)

Let’s annihilate T = 〈20,21,22,23, · · · 〉

• Multiplying by a constant c = 2 gets:

2T = 〈2 ∗ 20,2 ∗ 21,2 ∗ 22,2 ∗ 23, · · · 〉 = 〈21,22,23,24, · · · 〉

• Shifting one place to the left gets LT = 〈21,22,23,24, · · · 〉
• Adding the sequence LT and −2T gives:

LT − 2T = 〈21 − 21,22 − 22,23 − 23, · · · 〉 = 〈0,0,0, · · · 〉

• The annihilator of T is thus L− 2

32

Distributive Property

• The distributive property holds for these three operators

• Thus can rewrite LT − 2T as (L− 2)T

• The operator (L − 2) annihilates T (makes it the sequence

of all 0’s)

• Thus (L− 2) is called the annihilator of T

33

0, the “Forbidden Annihilator”

• Multiplication by 0 will annihilate any sequence

• Thus we disallow multiplication by 0 as an operation

• In particular, we disallow (c−c) = 0 for any c as an annihilator

• Must always have at least one L operator in any annihilator!

34

Uniqueness

• An annihilator annihilates exactly one type of sequence

• In general, the annihilator L − c annihilates any sequence of

the form 〈a0cn〉
• If we find the annihilator, we can find the type of sequence,

and thus solve the recurrence

• We will need to use the base case for the recurrence to solve

for the constant a0

35



Example

If we apply operator (L − 3) to sequence T above, it fails to

annihilate T

(L− 3)T = LT + (−3)T

= 〈21,22,23, · · · 〉+ 〈−3× 20,−3× 21,−3× 22, · · · 〉
= 〈(2− 3)× 20, (2− 3)× 21, (2− 3)× 22, · · · 〉
= (2− 3)T = −T

36

Example (II)

What does (L−c) do to other sequences A = 〈a0dn〉 when d 6= c?:

(L− c)A = (L− c)〈a0, a0d, a0d2, a0d3, · · · 〉
= L〈a0, a0d, a0d2, a0d3, · · · 〉 − c〈a0, a0d, a0d2, a0d3, · · · 〉
= 〈a0d, a0d2, a0d3, · · · 〉 − 〈ca0, ca0d, ca0d2, ca0d3, · · · 〉
= 〈a0d− ca0, a0d2 − ca0d, a0d3 − ca0d2, · · · 〉
= 〈(d− c)a0, (d− c)a0d, (d− c)a0d2, · · · 〉
= (d− c)〈a0, a0d, a0d2, · · · 〉
= (d− c)A

37

Uniqueness

• The last example implies that an annihilator annihilates one

type of sequence, but does not annihilate other types of

sequences

• Thus Annihilators can help us classify sequences, and thereby

solve recurrences

38

Lookup Table

• The annihilator L − a annihilates any sequence of the form

〈c1an〉

39



Example

First calculate the annihilator:

• Recurrence: T (n) = 4 ∗ T (n− 1), T (0) = 2

• Sequence: T = 〈2,2 ∗ 4,2 ∗ 42,2 ∗ 43, · · · 〉
• Calulate the annihilator:

– LT = 〈2 ∗ 4,2 ∗ 42,2 ∗ 43,2 ∗ 44, · · · 〉
– 4T = 〈2 ∗ 4,2 ∗ 42,2 ∗ 43,2 ∗ 44, · · · 〉
– Thus LT − 4T = 〈0,0,0, · · · 〉
– And so L− 4 is the annihilator

40

Example (II)

Now use the annihilator to solve the recurrence

• Look up the annihilator in the “Lookup Table”

• It says: “The annihilator L − 4 annihilates any sequence of

the form 〈c14n〉”
• Thus T (n) = c14

n, but what is c1?

• We know T (0) = 2, so T (0) = c14
0 = 2 and so c1 = 2

• Thus T (n) = 2 ∗ 4n

41

In Class Exercise

Consider the recurrence T (n) = 3 ∗ T (n− 1), T (0) = 3,

• Q1: Calculate T (0),T (1),T (2) and T (3) and write out the

sequence T

• Q2: Calculate LT , and use it to compute the annihilator of

T

• Q3: Look up this annihilator in the lookup table to get the

general solution of the recurrence for T (n)

• Q4: Now use the base case T (0) = 3 to solve for the con-

stants in the general solution

42

Todo

• HW 1

43


