CS 561, Lecture 4 Jared Saia University of New Mexico Today's Outline • Annihilators with Multiple Operators • Annihilators for recurrences with non-homogeneous terms • Transformations 1 Multiple Operators _____ • We can apply multiple operators to a sequence • For example, we can multiply by the constant c and then by the constant d to get the operator cd • We can also multiply by c and then shift left to get cLT which is the same as $\mathsf{L}cT$ • We can also shift the sequence twice to the left to get LLT which we'll write in shorthand as L^2T Multiple Operators _____ • We can string operators together to annihilate more complicated sequences • Consider: $T = \langle 2^0 + 3^0, 2^1 + 3^1, 2^2 + 3^2, \dots \rangle$ • We know that (L−2) annihilates the powers of 2 while leaving the powers of 3 essentially untouched • Similarly, $(L - 3)$ annihilates the powers of 3 while leaving the powers of 2 essentially untouched • Thus if we apply both operators, we'll see that (L−2)(L−3) annihilates the sequence T

Key Point _

The Details <u>___</u>

Factoring

table

• $L^2 - L - 1$ is an annihilator that is not in our lookup table • However, we can *factor* this annihilator (using the quadratic formula) to get something similar to what's in the lookup

• **L**² – **L** – 1 = (**L** – ϕ)(**L** – $\hat{\phi}$), where $\phi = \frac{1+\sqrt{5}}{2}$ and $\hat{\phi} = \frac{1-\sqrt{5}}{2}$.

Quadratic Formula

"Me fail English? That's Unpossible!" - Ralph, the Simpsons

High School Algebra Review:

- To factor something of the form $ax^2 + bx + c$, we use the Quadratic Formula:
- $ax^2 + bx + c$ factors into $(x \phi)(x \hat{\phi})$, where:

$$
\phi = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \tag{4}
$$

$$
\hat{\phi} = \frac{-b - \sqrt{b^2 - 4ac}}{2a} \tag{5}
$$

Finding the Constants • We know $T = \langle c_1 \phi^n + c_2 \hat{\phi}^n \rangle$, where $\phi = \frac{1+\sqrt{5}}{2}$ and $\hat{\phi} = \frac{1-\sqrt{5}}{2}$ • We know $T(0) = c_1 + c_2 = 0$ (6) $T(1) = c_1 \phi + c_2 \hat{\phi} = 1$ (7) • We've got two equations and two unknowns • Can solve to get $c_1 = \frac{1}{\sqrt{5}}$ $\frac{1}{5}$ and $c_2=-\frac{1}{\sqrt{5}}$.
亏' 12 The Punchline ______ • Recall Fibonnaci recurrence: $T(0) = 0$, $T(1) = 1$, and $T(n) = 1$ $T(n-1) + T(n-2)$ • The final explicit formula for $T(n)$ is thus: $T(n) = \frac{1}{\sqrt{5}}$ $(1 + \sqrt{5})$ 2 \setminus^n $-\frac{1}{\sqrt{5}}$ $(1 - \sqrt{5})$ 2 \setminus^n (Amazingly, $T(n)$ is always an integer, in spite of all of the square roots in its formula.) 13 A Problem • Our lookup table has a big gap: What does $(L - a)(L - a)$ annihilate? • It turns out it annihilates sequences such as $\langle na^n \rangle$ Example ______ $(L-a)\langle na^n \rangle = \langle (n+1)a^{n+1} - (a)na^n \rangle$ $= \langle (n+1)a^{n+1} - na^{n+1} \rangle$ $= \langle (n+1-n)a^{n+1} \rangle$ $= \langle a^{n+1} \rangle$ $(L-a)^2\langle na^n \rangle = (L-a)\langle a^{n+1} \rangle$ $=$ $\langle 0 \rangle$

Generalization _______

Lookup Table _____

- It turns out that $(L-a)^d$ annihilates sequences of the form $\langle p(n)a^n \rangle$ where $p(n)$ is any polynomial of degree $d-1$
- Example: $(L-1)^3$ annihilates the sequence $\langle n^2 * 1^n \rangle =$ $\langle 1, 4, 9, 16, 25 \rangle$ since $p(n) = n^2$ is a polynomial of degree $d - 1 = 2$
- (L a) annihilates only all sequences of the form $\langle c_0 a^n \rangle$
- \bullet (L-a)(L-b) annihilates only all sequences of the form $\langle c_0 a^n +$ c_1b^n
- $(L a_0)(L a_1) \dots (L a_k)$ annihilates only sequences of the form $\langle c_0 a_0^n + c_1 a_1^n + \dots c_k a_k^n \rangle$, here $a_i \neq a_j$, when $i \neq j$
- $(L-a)^2$ annihilates only sequences of the form $\langle (c_0n+c_1)a^n \rangle$
- (L a)^k annihilates only sequences of the form $\langle p(n)a^n \rangle$, $degree(p(n)) = k - 1$

Example (II)

Example

Consider the recurrence $T(n) = 7T(n-1)-16T(n-2)+12T(n-1)$ 3), $T(0) = 1$, $T(1) = 5$, $T(2) = 17$

- Write down the annihilator: From the definition of the sequence, we can see that $L^{3}T - 7L^{2}T + 16LT - 12T = 0$. so the annihilator is $L^3 - 7L^2 + 16L - 12$
- Factor the annihilator: We can factor by hand or using a computer program to get $L^3 - 7L^2 + 16L - 12 = (L-2)^2(L-3)$
- Look up to get general solution: The annihilator (L − 2)²(L – 3) annihilates sequences of the form $\langle (c_0n + c_1)2^n +$ $c_23^n\rangle$
- Solve for constants: $T(0) = 1 = c_1 + c_2$, $T(1) = 5 =$ $2c_0 + 2c_1 + 3c_2$, $T(2) = 17 = 8c_0 + 4c_1 + 9c_2$. We've got three equations and three unknowns. Solving by hand, we get that $c_0 = 1, c_1 = 0, c_2 = 1$. Thus: $T(n) = n2^n + 3^n$

Consider the recurrence $T(n) = 2T(n-1) - T(n-2)$, $T(0) = 0$, $T(1) = 1$

- Write down the annihilator: From the definition of the sequence, we can see that $L^2T - 2LT + T = 0$, so the annihilator is $L^2 - 2L + 1$
- Factor the annihilator: We can factor by hand or using the quadratic formula to get $L^2 - 2L + 1 = (L - 1)^2$
- Look up to get general solution: The annihilator $(L-1)^2$ annihilates sequences of the form $(c_0n + c_1)1^n$
- Solve for constants: $T(0) = 0 = c_1$, $T(1) = 1 = c_0 + c_1$, We've got two equations and two unknowns. Solving by hand, we get that $c_0 = 0, c_1 = 1$. Thus: $T(n) = n$

24 25 At Home Exercise Consider the recurrence $T(n) = 6T(n-1) - 9T(n-2)$, $T(0) = 1$, $T(1) = 6$ • Q1: What is the annihilator of this sequence? • Q2: What is the factored version of the annihilator? • Q3: What is the general solution for the recurrence? • Q4: What are the constants in this general solution? (Note: You can check that your general solution works for $T(2)$) Non-homogeneous terms • Consider a recurrence of the form $T(n) = T(n-1) + T(n-1)$ $2) + k$ where k is some constant • The terms in the equation involving T (i.e. $T(n-1)$ and $T(n-2)$) are called the homogeneous terms • The other terms (i.e.k) are called the non-homogeneous terms • In a height-balanced tree, the height of two subtrees of any node differ by at most one • Let $T(n)$ be the smallest number of nodes needed to obtain a height balanced binary tree of height n • Q: What is a recurrence for $T(n)$? • A: Divide this into smaller subproblems $-$ To get a height-balanced tree of height n with the smallest number of nodes, need one subtree of height $n-1$, and one of height $n - 2$, plus a root node – Thus $T(n) = T(n-1) + T(n-2) + 1$ 28 • Let's solve this recurrence: $T(n) = T(n-1) + T(n-2) + 1$ (Let $T_n = T(n)$, and $T = \langle T_n \rangle$) • We know that (L^2-L-1) annihilates the homogeneous terms • Let's apply it to the entire equation: $(L^2 - L - 1)\langle T_n \rangle = L^2 \langle T_n \rangle - L \langle T_n \rangle - 1 \langle T_n \rangle$ $= \langle T_{n+2} \rangle - \langle T_{n+1} \rangle - \langle T_n \rangle$ $= \langle T_{n+2} - T_{n+1} - T_n \rangle$ $= \langle 1, 1, 1, \cdots \rangle$ 29 Example • This is close to what we want but we still need to annihilate $\langle 1, 1, 1, \cdots \rangle$ • It's easy to see that $L - 1$ annihilates $\langle 1, 1, 1, \cdots \rangle$ • Thus $(L^2 - L - 1)(L - 1)$ annihilates $T(n) = T(n - 1) + T(n - 1)$ $2) + 1$ • When we factor, we get $(L-\phi)(L-\hat{\phi})(L-1)$, where $\phi = \frac{1+\sqrt{5}}{2}$ 2 and $\hat{\phi} = \frac{1-\sqrt{5}}{2}$. Lookup Land • Looking up $(L - \phi)(L - \hat{\phi})(L - 1)$ in the table • We get $T(n) = c_1 \phi^n + c_2 \hat{\phi}^n + c_3 1^n$ • If we plug in the appropriate initial conditions, we can solve for these three constants • We'll need to get equations for $T(2)$ in addition to $T(0)$ and $T(1)$

Example ______

Example _______

General Rule ______

Another Example

To find the annihilator for recurrences with non-homogeneous terms, do the following:

- Find the annihilator a_1 for the homogeneous part
- Find the annihilator a_2 for the non-homogeneous part
- The annihilator for the whole recurrence is then a_1a_2
- Consider $T(n) = T(n-1) + T(n-2) + 2$.
- The residue is $\langle 2, 2, 2, \cdots \rangle$ and
- The annihilator is still $(L^2 L 1)(L 1)$, but the equation for $T(2)$ changes!

