
CS 362, Lecture 5

Jared Saia

University of New Mexico

Today’s Outline

• Annihilator Wrap-up

• Loop Invariants

• Binary Heaps

1

Limitations

• Our method does not work on T (n) = T (n−1)+ 1
n or T (n) =

T (n− 1) + lgn

• The problem is that 1
n and lgn do not have annihilators.

• Our tool, as it stands, is limited.

• Key idea for strengthening it is transformations

2

Transformations Idea

• Consider the recurrence giving the run time of mergesort

T (n) = 2T (n/2) + kn (for some constant k), T (1) = 1

• How do we solve this?

• We have no technique for annihilating terms like T (n/2)

• However, we can transform the recurrence into one with

which we can work

3

Transformation

• Let n = 2i and rewrite T (n):

• T (20) = 1 and T (2i) = 2T (2i

2) + k2i = 2T (2i−1) + k2i

• Now define a new sequence t as follows: t(i) = T (2i)

• Then t(0) = 1, t(i) = 2t(i− 1) + k2i

4

Now Solve

• We’ve got a new recurrence: t(0) = 1, t(i) = 2t(i− 1) + k2i

• We can easily find the annihilator for this recurrence

• (L−2) annihilates the homogeneous part, (L−2) annihilates

the non-homogeneous part, So (L−2)(L−2) annihilates t(i)

• Thus t(i) = (c1i + c2)2
i

5

Reverse Transformation

• We’ve got a solution for t(i) and we want to transform this

into a solution for T (n)

• Recall that t(i) = T (2i) and 2i = n

t(i) = (c1i + c2)2
i (1)

T (2i) = (c1i + c2)2
i (2)

T (n) = (c1 lgn + c2)n (3)

= c1n lgn + c2n (4)

= O(n lgn) (5)

6

Success!

Let’s recap what just happened:

• We could not find the annihilator of T (n) so:

• We did a transformation to a recurrence we could solve, t(i)

(we let n = 2i and t(i) = T (2i))

• We found the annihilator for t(i), and solved the recurrence

for t(i)

• We reverse transformed the solution for t(i) back to a solu-

tion for T (n)

7

Another Example

• Consider the recurrence T (n) = 9T (n
3)+ kn, where T (1) = 1

and k is some constant

• Let n = 3i and rewrite T (n):

• T (30) = 1 and T (3i) = 9T (3i−1) + k3i

• Now define a sequence t as follows t(i) = T (3i)

• Then t(0) = 1, t(i) = 9t(i− 1) + k3i

8

Now Solve

• t(0) = 1, t(i) = 9t(i− 1) + k3i

• This is annihilated by (L− 9)(L− 3)

• So t(i) is of the form t(i) = c19
i + c23

i

9

Reverse Transformation

• t(i) = c19
i + c23

i

• Recall: t(i) = T (3i) and 3i = n

t(i) = c19
i + c23

i

T (3i) = c19
i + c23

i

T (n) = c1(3
i)2 + c23

i

= c1n2 + c2n

= O(n2)

10

In Class Exercise

Consider the recurrence T (n) = 2T (n/4) + kn, where T (1) = 1,

and k is some constant

• Q1: What is the transformed recurrence t(i)? How do we

rewrite n and T (n) to get this sequence?

• Q2: What is the annihilator of t(i)? What is the solution for

the recurrence t(i)?

• Q3: What is the solution for T (n)? (i.e. do the reverse

transformation)

11

A Final Example

Not always obvious what sort of transformation to do:

• Consider T (n) = 2T (
√

n) + logn

• Let n = 2i and rewrite T (n):

• T (2i) = 2T (2i/2) + i

• Define t(i) = T (2i):

• t(i) = 2t(i/2) + i

12

A Final Example

• This final recurrence is something we know how to solve!

• t(i) = O(i log i)

• The reverse transform gives:

t(i) = O(i log i) (6)

T (2i) = O(i log i) (7)

T (n) = O(logn log logn) (8)

13

Correctness of Algorithms

• The most important aspect of algorithms is their correctness

• An algorithm by definition always gives the right answer to

the problem

• A procedure which doesn’t always give the right answer is a

heuristic

• All things being equal, we prefer an algorithm to a heuristic

• How do we prove an algorithm is really correct?

14

Loop Invariants

A useful tool for proving correctness is loop invariants. Three

things must be shown about a loop invariant

• Initialization: Invariant is true before first iteration of loop

• Maintenance: If invariant is true before iteration i, it is also

true before iteration i + 1 (for any i)

• Termination: When the loop terminates, the invariant gives

a property which can be used to show the algorithm is correct

15

Example Loop Invariant

• We’ll prove the correctness of a simple algorithm which solves

the following interview question:

• Find the middle of a linked list, while only going through the

list once

• The basic idea is to keep two pointers into the list, one of

the pointers moves twice as fast as the other

• (Call the head of the list the 0-th elem, and the tail of the list

the (n−1)-st element, assume that n−1 is an even number)

16

Example Algorithm

GetMiddle (List l){

pSlow = pFast = l;

while ((pFast->next)&&(pFast->next->next)){

pFast = pFast->next->next

pSlow = pSlow->next

}

return pSlow

}

17

Example Loop Invariant

• Invariant: At the start of the i-th iteration of the while loop,

pSlow points to the i-th element in the list and pFast points

to the 2i-th element

• Initialization: True when i = 0 since both pointers are at

the head

• Maintenance: if pSlow, pFast are at positions i and 2i re-

spectively before i-th iteration, they will be at positions i+1,

2(i + 1) respectively before the i + 1-st iteration

• Termination: When the loop terminates, pFast is at ele-

ment n− 1. Then by the loop invariant, pSlow is at element

(n− 1)/2. Thus pSlow points to the middle of the list

18

Challenge

• Figure out how to use a similar idea to determine if there is

a loop in a linked list without marking nodes!

19

What is a Heap

• “A heap data structure is an array that can be viewed as a

nearly complete binary tree”

• Each element of the array corresponds to a value stored at

some node of the tree

• The tree is completely filled at all levels except for possibly

the last which is filled from left to right

20

heap-size (A)

• An array A that represents a heap has two attributes

– length (A) which is the number of elements in the array

– heap-size (A) which is the number of elems in the heap

stored within the array

• I.e. only the elements in A[1..heap-size (A)] are elements of

the heap

21

Tree Structure

• A[1] is the root of the tree

• For all i, 1 < i < heap-size (A)

– Parent (i) = bi/2c
– Left (i) = 2i

– Right (i) = 2i + 1

• If Left (i) > heap-size (A), there is no left child of i

• If Right (i) > heap-size (A), there is no right child of i

• If Parent (i) < 0, there is no parent of i

22

Example

11

4

2 1

9

7

3

8

65

A:

 1 2 3 4 5 6 7 8 9 10

11 9 4 7 8 2 1 5 3 6

23

Max-Heap Property

• For every node i other than the root, A[Parent (i)] ≥ A[i]

24

Max-Heap Property

• For every node i other than the root, A[Parent (i)] ≥ A[i]

• Parent is always at least as large as its children

• Largest element is at the root

(A Min-heap is organized the opposite way)

25

Height of Heap

• Height of a node in a heap is the number of edges in the

longest simple downward path from the node to a leaf

• Height of a heap of n elements is Θ(logn). Why?

26

Maintaining Heaps

• Q: How to maintain the heap property?

• A: Max-Heapify is given an array and an index i. Assumes

that the binary trees rooted at Left(i) and Right(i) are max-

heaps, but A[i] may be smaller than its children.

• Max-Heapify ensures that after its call, the subtree rooted

at i is a Max-Heap

27

Max-Heapify

• Main idea of the Max-Heapify algorithm is that it percolates

down the element that start at A[i] to the point where the

subtree rooted at i is a max-heap

• To do this, it repeatedly swaps A[i] with its largest child until

A[i] is bigger than both its children

• For simplicity, the algorithm is described recursively.

28

Max-Heapify

Max-Heapify (A,i)

1. l = Left(i)

2. r = Right(i)

3. largest = i

4. if (l ≤ heap-size(A) and A[l] > A[i]) then largest = l

5. if (r ≤ heap-size(A) and A[r] > A[largest]) then largest = r

6. if largest 6= i then

(a) exchange A[i] and A[largest]

(b) Max-Heapify (A,largest)

29

Example

11

4

2 17

35

11

4

2 1

9

7

35

11

4

2 1

9

7

3

8

5

6

6

6

9

8
8

i

30

Analysis

• Let T (h) be the runtime of max-heapify on a subtree of

height h

• Then T (1) = Θ(1), T (h) = T (h− 1) + 1

• Solution to this recurrence is T (h) = Θ(h)

• Thus if we let T (n) be the runtime of max-heapify on a sub-

tree of size n, T (n) = O(logn), since logn is the maximum

height of heap of size n

31

Build-Max-Heap

• Q: How can we convert an arbitrary array into a max-heap?

• A: Use Max-Heapify in a bottom-up manner

• Note: The elements A[bn/2c+1],..,A[n] are all leaf nodes of

the tree, so each is a 1 element heap to begin with

32

Build-Max-Heap

Build-Max-Heap (A)

1. heap-size (A) = length (A)

2. for (i = blength(A)/2c;i > 0;i−−)

(a) do Max-Heapify (A,i)

33

Example
A = 4 2 1 6 7 9 11 5 3 8

35 8

4

12

6 9 117

35

4

12

9 11

35

4

96

35

4

2

9 116

35

96

35

6

6

1 11

1

2

8

7

8

7

8

7

8

7

2

4

11

1

11

9

4 1

8

7

2

34

Loop Invariant

• Loop Invariant: “At the start of the i-th iteration of the for

loop, each node i + 1, i + 2, . . . n is the root of a max-heap”

35

Correctness

• Initialization: i = bn/2c prior to first iteration. But each

node bn/2c+ 1, bn/2c+ 2,. . . ,n is a leaf so is the root of a

trivial max-heap

• Termination: At termination, i = 0, so each node 1, . . . , n

is the root of a max-heap. In particular, node 1 is the root

of a max heap.

36

Maintenance

• Maintenance: First note that if the nodes i+1,. . . n are the

roots of max-heaps before the call to Max-Heapify (A,i), then

they will be the roots of max-heaps after the call. Further

note that the children of node i are numbered higher than i

and thus by the loop invariant are both roots of max heaps.

Thus after the call to Max-Heapify (A,i), the node i is the

root of a max-heap. Hence, when we decrement i in the for

loop, the loop invariant is established.

37

Time Analysis

(Naive) Analysis:

• Max-Heapify takes O(logn) time per call

• There are O(n) calls to Max-Heapify

• Thus, the running time is O(n logn)

38

Time Analysis

Better Analysis. Note that:

• An n element heap has height no more than logn

• There are at most n/2h nodes of any height h (to see this,

consider the min number of nodes in a heap of height h)

• Time required by Max-Heapify when called on a node of

height h is O(h).

• Thus total time is:
∑logn

h=0
n
2hO(h)

39

Analysis

logn∑
h=0

n

2h
O(h) = O

n
logn∑
h=0

h

2h

 (9)

= O

n
∞∑

h=0

h

2h

 (10)

= O(n) (11)

40

Analysis

The last step follows since for all |x| < 1,

∞∑
i=0

ixi =
x

(1− x)2
(12)

Can get this equality by recalling that for all |x| < 1,

∞∑
i=0

xi =
1

1− x
,

and taking the derivative of both sides!

41

Heap-Sort

Heap-Sort (A)

1. Build-Max-Heap (A)

2. for (i=length (A);i > 1;i−−)

(a) do exchange A[1] and A[i]

(b) heap-size (A) = heap-size (A) - 1

(c) Max-Heapify (A,1)

42

Analysis

• Build-Max-Heap takes O(n), and each of the O(n) calls to

Max-Heapify take O(logn), so Heap-Sort takes O(n logn)

• Correctness???

43

