

Example Loop Invariant • We'll prove the correctness of a simple algorithm which solves the following interview question: • Find the middle of a linked list, while only going through the list once • The basic idea is to keep two pointers into the list, one of the pointers moves twice as fast as the other • (Call the head of the list the 0-th elem, and the tail of the list the $(n-1)$ -st element, assume that $n-1$ is an even number) 16 Example Algorithm GetMiddle (List l){ $pSlow = pFast = 1;$ while ((pFast->next)&&(pFast->next->next)){ pFast = pFast->next->next pSlow = pSlow->next } return pSlow } 17 Example Loop Invariant • Invariant: At the start of the *i*-th iteration of the while loop, pSlow points to the i-th element in the list and pFast points to the 2i-th element • Initialization: True when $i = 0$ since both pointers are at the head • Maintenance: if pSlow, pFast are at positions i and $2i$ respectively before *i*-th iteration, they will be at positions $i+1$, $2(i + 1)$ respectively before the $i + 1$ -st iteration • Termination: When the loop terminates, pFast is at element $n-1$. Then by the loop invariant, pSlow is at element $(n-1)/2$. Thus pSlow points to the middle of the list Challenge • Figure out how to use a similar idea to determine if there is a loop in a linked list without marking nodes!

What is a Heap ______

 $\rule{1em}{0.15mm}$ heap-size (A) $\rule{1em}{0.15mm}$

- "A heap data structure is an array that can be viewed as a nearly complete binary tree"
- Each element of the array corresponds to a value stored at some node of the tree
- The tree is completely filled at all levels except for possibly the last which is filled from left to right
- \bullet An array A that represents a heap has two attributes
	- length (A) which is the number of elements in the array
	- heap-size (A) which is the number of elems in the heap stored within the array
- I.e. only the elements in $A[1..$ heap-size $(A)]$ are elements of the heap

Max-Heapify ______

• Main idea of the Max-Heapify algorithm is that it percolates down the element that start at $A[i]$ to the point where the subtree rooted at i is a max-heap

• To do this, it repeatedly swaps $A[i]$ with its largest child until $A[i]$ is bigger than both its children

• For simplicity, the algorithm is described recursively.

Max-Heapify (A,i)

$$
1. \ l = Left(i)
$$

- 2. $r = Right(i)$
- 3. largest $=i$
- 4. if $(l \leq$ heap-size(A) and $A[l] > A[i]$) then largest = l
- 5. if $(r \leq \text{heap-size}(A)$ and $A[r] > A[largest])$ then $largest = r$
- 6. if $largest \neq i$ then
	- (a) exchange A[i] and A[largest]
	- (b) Max-Heapify (A,largest)

Maintenance ______

Correctness ______

- Initialization: $i = |n/2|$ prior to first iteration. But each node $|n/2| + 1$, $|n/2| + 2,...,n$ is a leaf so is the root of a trivial max-heap
- Termination: At termination, $i = 0$, so each node $1, \ldots, n$ is the root of a max-heap. In particular, node 1 is the root of a max heap.

• Maintenance: First note that if the nodes $i+1,\ldots n$ are the roots of max-heaps before the call to Max-Heapify (A,i), then they will be the roots of max-heaps after the call. Further note that the children of node i are numbered higher than i and thus by the loop invariant are both roots of max heaps. Thus after the call to Max-Heapify (A,i) , the node i is the root of a max-heap. Hence, when we decrement i in the for loop, the loop invariant is established.

Analysis ______

 $log r$ Σ $\overline{}$ n

 $h=0$ γ

 $\frac{n}{2^h}O(h) = O\left(\frac{n}{2^h}\right)$

 $\sqrt{2}$ $\lfloor n \rfloor$ $log n$ Σ \mathbf{r} \overline{n}

 $\sqrt{2}$ $\left\lfloor n \sum_{i=1}^n\right\rfloor$ ∞

 $=$ O

 $h=0$

 $h=0$ \degree

 $h^ 2^h$

 h^+ 2^h

 \setminus

 \setminus

 $= O(n)$ (11)

(9)

(10)

Analysis ______

The last step follows since for all $|x| < 1$,

$$
\sum_{i=0}^{\infty} ix^i = \frac{x}{(1-x)^2}
$$
 (12)

43

Can get this equality by recalling that for all $|x| < 1$,

$$
\sum_{i=0}^{\infty} x^i = \frac{1}{1-x},
$$

and taking the derivative of both sides!

