
CS 561, Lecture 8

Jared Saia

University of New Mexico

Today’s Outline

• Hash Tables

• Trees

1

Direct Addressing Problem

• If universe U is large, storing the array T may be impractical

• Also much space can be wasted in T if number of objects

stored is small

• Q: Can we do better?

• A: Yes we can trade time for space

2

Hash Tables

• “Key” Idea: An element with key k is stored in slot h(k),

where h is a hash function mapping U into the set {0, . . . , m−
1}

• Main problem: Two keys can now hash to the same slot

• Q: How do we resolve this problem?

• A1: Try to prevent it by hashing keys to “random” slots and

making the table large enough

• A2: Chaining

• A3: Open Addressing

3



Chained Hash

In chaining, all elements that hash to the same slot are put in a

linked list.

CH-Insert(T,x){Insert x at the head of list T[h(key(x))];}

CH-Search(T,k){search for elem with key k in list T[h(k)];}

CH-Delete(T,x){delete x from the list T[h(key(x))];}

4

Analysis

• CH-Insert and CH-Delete take O(1) time if the list is doubly

linked and there are no duplicate keys

• Q: How long does CH-Search take?

• A: It depends. In particular, depends on the load factor,

α = n/m (i.e. average number of elems in a list)

5

CH-Search Analysis

• Worst case analysis: everyone hashes to one slot so Θ(n)

• For average case, make the simple uniform hashing assump-

tion: any given elem is equally likely to hash into any of the

m slots, indep. of the other elems

• Let ni be a random variable giving the length of the list at

the i-th slot

• Then time to do a search for key k is 1 + nh(k)

6

CH-Search Analysis

• Q: What is E(nh(k))?

• A: We know that h(k) is uniformly distributed among {0, .., m−
1}

• Thus, E(nh(k)) =
∑m−1

i=0 (1/m)ni = n/m = α

7



Hash Functions

• Want each key to be equally likely to hash to any of the m

slots, independently of the other keys

• Key idea is to use the hash function to “break up” any pat-

terns that might exist in the data

• We will always assume a key is a natural number (can e.g.

easily convert strings to naturaly numbers)

8

Division Method

• h(k) = k mod m

• Want m to be a prime number, which is not too close to a

power of 2

• Why?

9

Multiplication Method

• h(k) = bm ∗ (kA mod 1)c
• kA mod 1 means the fractional part of kA

• Advantage: value of m is not critical, need not be a prime

• A = (
√

5− 1)/2 works well in practice

10

Open Addressing

• All elements are stored in the hash table, there are no sepa-

rate linked lists

• When we do a search, we probe the hash table until we find

an empty slot

• Sequence of probes depends on the key

• Thus hash function maps from a key to a “probe sequence”

(i.e. a permutation of the numbers 0, .., m− 1)

11



Open Addressing

• In general, for open addressing, the hash function depends

on both the key to be inserted and the probe number

• Thus for a key k, we get the probe sequence

h(k,0), h(k,1), . . . , h(k, m− 1)

12

Open Addressing

• If we use open addressing, the hash table can never fill up

i.e. the load factor α can never exceed 1

• An advantage of open addressing is that it avoids pointers

and the overhead of storing lists in each slot of the table

• This freed up memory can be used to create more slots in

the table which can reduce the load-factor and potentially

speed up retrieval time

• A disadvantage is that deletion is difficult. If deletions occur

in the hash table, chaining is usually used

13

OA-Insert

OA-Insert(T,k){

i = 0;

repeat {

j = h(k,i);

if (T[j] = nil){

T[j] = k;

return j;

}

else i++;

} until (i==m);

}

14

OA-Search

OA-Insert(T,k){

i = 0;

repeat {

j = h(k,i);

if (T[j] = k){

return j;

}

else i++;

} until (T[j]==nil or i==m);

}

15



OA-Delete

• Deletion from an open-address hash table is difficult

• When we delete a key from slot i, we can’t just mark that

slot as empty by storing nil there

• The problem is that this would make it impossible to find

some key k during whose insertion we probed slot i and found

it occupied

16

OA-Delete

• One solution is to mark the slot by storing in it the value

“DELETED”

• Then we modify OA-Insert to treat such a slot as if it were

empty so that something can be stored in it

• OA-Search passes over these special slots while searching

• Note that if we use this trick, search times are no longer

dependent on the load-factor α (for this reason, chaining is

more commonly used when keys must be deleted)

17

Implementation

• To analyze open-address hashing, we make the assumption

of uniform hashing: we assume that each key is equally likely

to have any of the m! permutations of {0,1, . . . , m−1} as its

probe sequence

• True uniform hashing is difficult to implement, so in practice,

we generally use one of three approximations on the next slide

18

Implementations

All positions are taken modulo m, and i ranges from 1 to m− 1

• Linear Probing: Initial probe is to position h(k), successive

probes are to positions h(k) + i,

• Quadratic Probing: Initial probes is to position h(k), succes-

sive probes are to position h(k) + c1i + c2i2

• Double Hashing: Initial probe is to position h(k), successive

probes are to positions h(k) + ih2(k)

19



Analysis

• Recall that the load factor, α, is the number of elements

stored in the hash table, n, divided by the total number of

slots m

• In open-address hashing, we have at most one element per

slot so α < 1

• We assume uniform hashing i.e. each probe maps to essen-

tially a random slot in the table.

• We can show that the expected time for insertions is at most

1/(1 − α), the expected time for an unsuccessful search is

1/(1 − α) and the expected time for a successful search is

(1/α) ln[1/(1− α)]

20

Hash Tables Wrapup

Hash Tables implement the Dictionary ADT, namely:

• Insert(x) - O(1) expected time, Θ(n) worst case

• Lookup(x) - O(1) expected time, Θ(n) worst case

• Delete(x) - O(1) expected time, Θ(n) worst case

21

Binary Search Trees

• Binary Search Trees are another data structure for imple-

menting the dictionary ADT

22

Red-Black Trees

Red-Black trees (a kind of binary tree) also implement the Dic-

tionary ADT, namely:

• Insert(x) - O(logn) time

• Lookup(x) - O(logn) time

• Delete(x) - O(logn) time

23



Why BST?

• Q: When would you use a Search Tree?

• A1: When need a hard guarantee on the worst case run times

(e.g. “mission critical” code)

• A2: When want something more dynamic than a hash table

(e.g. don’t want to have to enlarge a hash table when the

load factor gets too large)

• A3: Search trees can implement some other important op-

erations...

24

Search Tree Operations

• Insert

• Lookup

• Delete

• Minimum/Maximum

• Predecessor/Successor

25

What is a BST?

• It’s a binary tree

• Each node holds a key and record field, and a pointer to left

and right children

• Binary Search Tree Property is maintained

26

Binary Search Tree Property

• Let x be a node in a binary search tree. If y is a node in the

left subtree of x, then key(y)≤key(x). If y is a node in the

right subtree of x then key(x)≤key(y)

27



Example BST

28

Inorder Walk

• BSTs are arranged in such a way that we can print out the

elements in sorted order in Θ(n) time

• Inorder Tree-Walk does this

29

Inorder Tree-Walk

Inorder-TW(x){

if (x is not nil){

Inorder-TW(left(x));

print key(x);

Inorder-TW(right(x));

}

30

Example Tree-Walk

31



Analysis

• Correctness?

• Run time?

32

Search in BT

Tree-Search(x,k){

if (x=nil) or (k = key(x)){

return x;

}

if (k<key(x)){

return Tree-Search(left(x),k);

}else{

return Tree-Search(right(x),k);

}

}

33

Analysis

• Let h be the height of the tree

• The run time is O(h)

• Correctness???

34

In-Class Exercise

• Q1: What is the loop invariant for Tree-Search?

• Q2: What is Initialization?

• Q3: Maintenance?

• Q4: Termination?

35


