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1. Asymptotic Analysis and Recurrence Relations Consider the functions 2" and 4". Is
2" = O(4") or is 2" = 0(4™)? Prove your answer using definitions of asymptotic notation
given in the book and in class and solve for the values required to show the definitions hold.
Solution: 2™ = o(4™). To show this, we need to show that for any positive constant ¢ > 0,
there exists a constant ng such that 0 < f(n) < cg(n) for all n > ng. This is equivalent to
saying that

2" < 4"
(1/2)" < ¢

2" > 1/c

n > log(l/c)

Thus we need to choose ng = log(1/c)

Recurrence Relations: Consider the Recurrence T'(n) = T'(n — 1) + 6T(n — 2) + n. Write
down the general form of the solution for this recurrence (i.e. don’t solve for the constants).
Solution: The homogeneous part is annihilated by L? — L—6 which factors into (L—3)(L+2).
The nonhomogeneous part is annihilated by (L —1)%. Looking this up in the lookup table gives
us that the general solution is of the form T(n) = c13™ + ca(—2)" + c3n + ¢4.



2. Sorting

Consider the following sorting program:

SillySort(A,i,j){
if i+1 > j
then return;
Let m be the index of the minimum element in A[i..j];
exchange A[i] and A[m];
SillySort(A,i+1,3);
}

Assume it takes n operations to find the value m in the third step of the algorithm for a list of
size n. Write and solve a recurrence relation for the run time of SillySort when called on the
array A[l..n]. Solution: T(n) =T(n—1)4 (n+1). (L—1) annihilates the homogeneous part
and (L —1)? annihilates the non-homogeneous part. So the complete annihilator is (L — 1)3.
The general form of the solution is thus cin® + can + c3 = O(n?)

Prove succinctly that SillySort correctly sorts a list of n elements by induction on n. Don’t
forget to include the base case, inductive hypothesis and inductive step.

Solution: We will do induction onn = j—i+1 to show that SillySort sorts the array Afi..j].
B.C. if n =1, there is only one element in the list and thus the list is already sorted. Hence
SillySort is correct in this case by simply returning without doing anything. 1.H. SillySort
correctly sorts lists of size less than n. 1.S. When faced with a list of size n, SillySort first
moves the minimum element to the front of the list. It then calls it self recursively on the
remainder of the list. We can assume by the I.H., that the recursive call correctly sorts the
remaining elements. Thus the entire array Afi..j| is in sorted order when the algorithm exits.



3. Probability

Hat check: Each of n people give their hats to a drunken hat check person at a restau-
rant. The hat check person gives back the hats in a random order. What is the expected
number of customers that get back their own hat? Solution: For each person i, let X; be an
indicator random variable that is 1 iff person i gets back their own hat. Let X = " X;
be a random wvariable that equals the number of hats returned to the right person. Then
E(X)=EX, Xi) =X E(X;), where the last step follows by linearity of expectation.
REMEMBER: Linearity of FExpectation holds even if the random variables aren’t independent.
Finally note that E(X;) = 1/n since this is the probability that person i’s hat is returned cor-
rectly. Thus E(X) = 1.

Minimum Value: Assume that a set of n unique values are inserted in random order
into a binary tree. What is the expected number of times that minimum value in the tree
changes? Hint: Let X; be an indicator random variable that is 1 iff the i-th element inserted
is smaller than the first i — 1 elements inserted. Solution: Let X be a random variable giving
the number of times that the minimum value in the tree changes. Note that X = > | X,.
Thus E(X) = E(X, Xi) = X% E(X;). Finally note that E(X;) = 1/i since this is the
probability that the i-th element is the smallest element among the first i elements (since
we’re assuming the values are inserted in random order). Thus E(X) = Y11 1/i. This last
summation is Inn + O(1) as we showed in class.



4. Sums

Imagine you are given a list of n integers and a single integer x. Your goal is to determine if
there is a pair of numbers in the list that sum to the value z. Note that a naive algorithm
for this problem is to just consider all pairs of numbers in the list and see if any of them sum
to z. This naive algorithm takes O(n?) time.

This problem consists of two parts. First, devise an algorithm to solve this problem with
good worst case run time. Second devise an algorithm for this problem with good expected
run time. Note that the word “good” is deliberately ambiguous, part of this problem is to
try to get as low as possible.

Hint: Make use of data structures and algorithms discussed in class.

Solution: To get the best worst case bound, first traverse each value in the list and insert it
into a balanced BST (such as a red black tree). Next traverse each value y in the list and do
a search for the value x —y in the BST. If this value is ever found, then return the pair y,
x — vy, otherwise return that there is no pair. This algorithm takes O(nlogn) time to insert
the values in the list and O(nlogn) time to do all the searches. To get the best expected time,
perform the same algorithm except insert the values x — y into a hash table with n buckets.
Assuming a good hash function, the expected time for all the insertions and all the deletions

will be O(n).



5. Matrix Maximum

In this problem, you are given a n by n matrix, M of integers. You will create a data
structure that will provide the following operations: IncrementRow, IncrementColumn and
GetMaximum. IncrementRow takes as input a row number and increases every entry in that
row by 1. IncrementColumn takes as input a column number and increases every entry in
that column by 1. GetMaximum returns the maximum element in the matrix (breaking ties
arbitrarily).

The data structure is initialized with the start matrix M and you can take any amount of
time for processing at initialization. After this, every call to GetMaximum must take O(1)
time and every call to IncrementRow and IncrementColumn must take O(nlogn) time.

Describe how you would create this data structure and sketch your analysis of its efficiency.
Hint: Make use of data structures and algorithms discussed in class.

Solution: On Initialization, create a heap of the n? items in the matriz. Keep a pointer from
each item in the matrixz to its corresponding node in the heap (these pointers will be used for
HEAP-INCREASE-KEY Operations). On a call to GetMaximum, just return the element at
the root of the heap (which will be the largest element). On a call to IncrementRow(i), traverse
each element in row i and call HEAP-INCREASE-KEY on each of these elements in the heap
to increase the key by exactly 1. HEAP-INCREASE-KEY takes O(logn?) = O(logn) time
per call and it’s called n times to give a total cost of O(nlogn). IncrementColumn is similar.
Note that the easiest way to keep pointers between the elements of the matriz and the elements
of the heap is for the heap to not be implemented as an array but rather with nodes and child
and parent pointers. This does not significantly change the heap data structure.



