
CS 561, HW 13

Prof. Jared Saia, University of New Mexico

1. Prove by induction that any graph with maximum degree 3 can be
colored with at most 4 colors. Recall that a coloring of a graph G is
an assignment of a color to each node in G such that the endpoints of
each edge in G are assigned different colors. Don’t forget to include
BC, IH and IS in your proof.
Hint: Perform induction on, n, the number of nodes in G. In the IS,
think about how to make G smaller, so that you can use the IH.

2. Exercise 34.5-2 (0-1 Integer Programming)

3. In the IGOR problem, Dr. Frankenstein tasks Igor to collect various
body parts. Each grave contains an assortment of items: body parts
and rubbish. Each item has a corresponding weight. Due to the cir-
cumstances of the midnight task, Igor must choose a set of graves to
dig up before dawn, and in the darkness, he will have no time to sort
through the remains. He must collect ALL buried items from each
grave he digs up and place them on his corpse wagon, which has a
maximum weight capacity.
The input for the IGOR problem is a list R (duplicates allowed) of
required body parts; a list of graves G = [g1, g2, . . . , gn], each of which
is a list of buried items. Each item i ∈

n
j=1 gj has a weight defined

by w(i) = wi, wi > 0. Finally, the wagon capacity is denoted by K
where K > 0. The output is either TRUE or FALSE.

Example:

R = [skull, torso, brain∗, brain∗, brain∗]

G = [g1 = [skull, brain], g2 = [skull, torso, brain, brain], g3 = [torso, pocketwatch]]

w(skull) = 2, w(torso) = 5, w(brain) = 1, w(pocketwatch) = 0.2

K = 15
The example input returns TRUE since Igor may choose graves g1
and g2. Igor places 6 items totaling 12 weight ≤ K = 15 into the

1

wagon, fulfilling the requisition R. Prove that IGOR is NP-Hard. *Dr.
Frankenstein understands the importance of finding a good brain.

4. Rock, Paper, Scissors is a simple 2 person game. In a given round,
both players simultaneously choose either Rock, Paper or Scissors. If
they both choose the same object, it’s a tie. Otherwise, Rock beats
Scissors; Scissors beats Paper; and Paper beats Rock. Imagine you’re
playing the following betting variant of this game with a friend. When
Scissors beats Paper, or Paper beats Rock, the loser gives the winner
$1. However, in the case when Rock beats Scissors, this is called a
smash, and the loser must give the winner $10.

(a) Say you know that your friend will choose Rock, Scissors or Paper,
each with probability 1/3. Write a linear program to calculate
the probabilities you should use to maximize your expected win-
nings. Let p1, p2, p3 be the variables associated with your optimal
probabilities for choosing Rock, Scissors and Paper respectively.
Note: If you want to check your work, there are several free linear
program solvers on the Internets: check the Wikipedia page on
linear programming.

(b) Now say that your friend is smart and, also, semi-clairvoyant: she
magically knows the exact probabilities you are using and will re-
spond optimally. Write another linear program to calculate the
probabilities you should now use in order to maximize your ex-
pected winnings. Hint 1: If your opponent knows your strategy,
her strategy will be to choose one of the three objects with prob-
ability 1. Hint 2: Review the LP we wrote for the shortest paths
problem.

5. X-STREAM Dance Dance Revolution (XDDR) is played on a Pogo
Stick while blind-folded. At the beginning of each round, you can hop
from your current square to any square. However, the target sequence,
σ is not known in advance: the value σ[i] is announced only at the end
of round i, for each i ∈ [1, n], where n is the length of σ.

Your goal is to minimize cost : the number of rounds i ∈ [1, n] in which
you hop in a square different than σ[i].

Below is an example game; your cost is 5 because there are 5 rounds
where the square you hop in does not match the target square in σ.

2

σ A C A D C D D

Pogo position A B B D A C A

Cost? 0 1 1 0 1 1 1

In round i, you let xi be a length 4 vector giving a probability distri-
bution over the 4 possible squares on which you will hop, i.e. xi[1],
xi[2], xi[3], xi[4] are the probabilities of hopping into squares A, B, C,
D respectively.

Then, for round i, you define fi(xi) as your expected cost in round i.
In round i, let ci be a length 4 vector giving the cost outcome: ci[j] = 0
when j matches the square given by σ[i] and ci[j] = 1 otherwise. For
example, in round i, if xi = [1/8, 1/2, 1/8, 1/4] and ci = [1, 1, 1, 0],
then your expected cost for this round is 3/4

(a) Give the mathematical expression for fi as a function of xi and
ci.

(b) Describe, algebraically, the convex search space κ. What is the
diameter, D of κ?

(c) Zinkevich’s theorem says that the cost of online gradient descent
tracks the cost of the best offline solution, x∗. In particular, if
OPT is the cost of the best offline solution, then the cost of
our algorithm is at most OPT +

√
nDG. Give a precise 1 line

definition of OPT for this problem using the ci values.

(d) Now, you want to use some history. In particular, you notice
that the current square in σ often depends on the last square.
So you want to use the outcome of the last round to help set
your probability distribution for the current round. To do this,
how would you change the convex search space κ? How many
dimensions does it now have? Will OPT, G and D likely in-
crease or decrease? Will your algorithm’s expected cost increase
or decrease?

3

