
CS 561, HW7

Prof. Jared Saia, University of New Mexico

1. The count-min sketch discussed in class only provides count estimates
of the number of times each item has been seen. What if we want to
augment the sketch to also keep track of the x items with largest count
estimates for some value x? Describe how you would do this. You may
find useful a heap; recall that a heap provides the functionality to (1)
insert an item with a given value; (2) increase the key of an item
already in the heap; and (3) delete min: delete the item in the heap
with minimum key. Assume these heap operations all take O(log x)
time. What is the run time of your augmented count-min sketch?

2. Consider the following alternative greedy algorithms for the activity
selection problem discussed in class. For each algorithm, either prove
or disprove that it constructs an optimal schedule.

(a) Choose an activity with shortest duration, discard all conflicting
activities and recurse

(b) Choose an activity that starts first, discard all conflicting activi-
ties and recurse

(c) Choose an activity that ends latest, discard all conflicting activ-
ities and recurse

(d) Choose an activity that conflicts with the fewest other activities,
discard all conflicting activities and recurse

3. Now consider a weighted version of the activity selection problem.
Imagine that each activity, ai has a weight, w(ai) (weights are totally
unrelated to activity duration). Your goal is now to choose a set
of non-conflicting activities that give you the largest possible sum of
weights, given an array of start times, end times, and values as input.

(a) Prove that the greedy algorithm described in class - Choose the
activity that ends first and recurse - does not always return an
optimal schedule for this problem

1



(b) Describe an algorithm to compute the optimal schedule in O(n2)
time. Hint: 1) Sort the activities by finish times. 2) Let m(j) be
the maximum weight achievable from activities a1, a2, . . . , aj . 3)
Come up with a recursive formulation for m(j) and use dynamic
programming. Hint 2: In the recursion in step 3, it’ll help if you
precompute for each job j, the value xj which is the largest index
i less than j such that job i is compatible with job j. Then when
computing m(j), consider that the optimal schedule could either
include job j or not include job j.

4. Consider the following problem.
INPUT: Positive integers r1, . . . , rn and c1, . . . , cn.
OUTPUT: An n by n matrix A with 0/1 entries such that for all i the
sum of the ith row in A is ri and the sum of the ith column in A is ci,
if such a matrix exists.
Think of the problem this way. You want to put pawns on an n by n
chessboard so that the ith row has ri pawns and the ith column has ci
pawns. Consider the following greedy algorithm that constructs A row
by row. Assume that the first i − 1 rows have been constructed. Let
aj be the number of 1’s in the jth column in the first i− 1 rows. Now
the ri columns with maximum cj − aj are assigned 1’s in row i, and
the rest of the columns are assigned 0’s. That is, the columns that still
need the most 1’s are given 1’s. Formally prove that this algorithm is
correct using an exchange argument.

2


