CS 561, HW 8

Prof. Jared Saia, University of New Mexico

. Problem 2 on the midterm.

. Problem 4 on the midterm. Please also create the table from your
recurrence for the following staircase: [10,1, 5,20, 20, 1], and give the
optimal value and the sequence of steps taken to get that value.

. Problem 5 on the midterm. Please also create the table for input
(1,3,4) using your recurrence and say whether Player 1 can always
win.

. Walt is making a device for his friend Hector that counts how many
times Hector rings a bell. The software for the device requires a binary
counter data structure with INCREMENT and RESET operators.

In class we discussed an INCREMENT algorithm for incrementing a
binary counter in O(1) amortized time. Now we want to include a
RESET algorithm that sets all the bits in the counter to 0. Below are
the algorithms for INCREMENT and RESET. They use an array B
of bits and an integer m giving the largest index in B set to 1.

Algorithm 1 INCREMENT(B,m) Algorithm 2 RESET(B,m)

1+ 0 1. for i <- 0 to m do
while BJi] =1 do 2: Bli]+ 0
Bli] + 0 3: end for

11+ 1
end while
Bli] + 1
if ¢ > m then

m <1
end if

Let n be the number of operations on this binary counter. Give the
following costs as a function of n.

(a) What is the worst-case run time of INCREMENT?
(b) What is the worst-case run time of RESET?

(c) Prove that in an arbitrary sequence of calls to INCREMENT
and RESET, each call has amortized cost O(1). Hint: Use the
accounting method and save up dollars during INCREMENT for
future calls to RESET.

5. Suppose we can insert or delete an element into a hash table in O(1)
time. In order to ensure that our hash table is always big enough,
without wasting a lot of memory, we will use the following global
rebuilding rules:

e After an insertion, if the table is more than 3/4 full, we allocate
a new table twice as big as our current table, insert everything
into the new table, and then free the old table.

e After a deletion, if the table is less than 1/4 full, we allocate a
new table half as big as our current table, insert everything into
the new table, and then free the old table.

Show that for any sequence of insertions and deletions, the amortized
time per operation is still O(1). Hint: Do not use potential functions.

