
CS 561, All Pairs Shortest Paths

Jared Saia

University of New Mexico



Outline

• All Pairs Shortest Paths

• Floyd Warshall Algorithm

1



All-Pairs Shortest Paths

• For the single-source shortest paths problem, we wanted to

find the shortest path from a source vertex s to all the other

vertices in the graph

• We will now generalize this problem further to that of finding

the shortest path from every possible source to every possible

destination

• In particular, for every pair of vertices u and v, we need to

compute the following information:

– dist(u, v) is the length of the shortest path (if any) from

u to v

– pred(u, v) is the second-to-last vertex (if any) on the short-

est path (if any) from u to v

2



Example

• For any vertex v, we have dist(v, v) = 0 and pred(v, v) =

NULL

• If the shortest path from u to v is only one edge long, then

dist(u, v) = w(u → v) and pred(u, v) = u

• If there’s no shortest path from u to v, then dist(u, v) = ∞
and pred(u, v) = NULL

3



APSP

• The output of our shortest path algorithm will be a pair of

n× n arrays encoding all n2 distances and predecessors.

• Many maps contain such a distance matric - to find the

distance from (say) Albuquerque to (say) Ruidoso, you look

in the row labeled “Albuquerque” and the column labeled

“Ruidoso”

• In this class, we’ll focus only on computing the distance array

• The predecessor array, from which you would compute the

actual shortest paths, can be computed with only minor ad-

ditions to the algorithms presented here

4



Lots of Single Sources

• Most obvious solution to APSP is to just run SSSP algorithm

n times, once for every possible source vertex

• Specifically, to fill in the subarray dist(s, ∗), we invoke either

Dijkstra’s or Bellman-Ford starting at the source vertex s

• We’ll call this algorithm ObviousAPSP

5



ObviousAPSP

ObviousAPSP(V,E,w){

for every vertex s{

dist(s,*) = SSSP(V,E,w,s);

}

}

6



Analysis

• The running time of this algorithm depends on which SSSP

algorithm we use

• If we use Bellman-Ford, the overall running time is O(n2m) =

O(n4)

• If all the edge weights are positive, we can use Dijkstra’s

instead, which decreases the run time to Θ(nm+n2 logn) =

O(n3)

7



Problem

• We’d like to have an algorithm which takes O(n3) but which

can also handle negative edge weights

• We’ll see that a dynamic programming algorithm, the Floyd

Warshall algorithm, will achieve this

• Note: the book discusses another algorithm, Johnson’s al-

gorithm, which is asymptotically better than Floyd Warshall

on sparse graphs. However we will not be discussing this

algorithm in class.

8



Dynamic Programming

• Recall: Dynamic Programming = Recursion + Memorization

• Thus we first need to come up with a recursive formulation

of the problem

• We might recursively define dist(u, v) as follows:

dist(u, v) =





0 if u = v

minx

dist(u, x) + w(x → v)


otherwise

9



The problem

• In other words, to find the shortest path from u to v, try all

possible predecessors x, compute the shortest path from u

to x and then add the last edge u → v

• Unfortunately, this recurrence doesn’t work

• To compute dist(u, v), we first must compute dist(u, x) for

every other vertex x, but to compute any dist(u, x), we first

need to compute dist(u, v)

• We’re stuck in an infinite loop!

10



The solution

• To avoid this circular dependency, we need some additional

parameter that decreases at each recursion and eventually

reaches zero at the base case

• One possibility is to include the number of edges in the short-

est path as this third magic parameter

• So define dist(u, v, k) to be the length of the shortest path

from u to v that uses at most k edges

• Since we know that the shortest path between any two ver-

tices uses at most n− 1 edges, what we want to compute is

dist(u, v, n− 1)

11



The Recurrence

dist(u, v, k) =






0 if u = v

∞ if k = 0 and u ∕= v

minx

dist(u, x, k − 1) + w(x → v)


otherwise

12



The Algorithm

• It’s not hard to turn this recurrence into a dynamic program-

ming algorithm

• Even before we write down the algorithm, though, we can

tell that its running time will be Θ(n4)

• This is just because the recurrence has four variables — u,

v, k and x — each of which can take on n different values

• Except for the base cases, the algorithm will just be four

nested “for” loops

13



DP-APSP

DP-APSP(V,E,w){

for all vertices u in V{

for all vertices v in V{

if(u=v)

dist(u,v,0) = 0;

else

dist(u,v,0) = infinity;

}}

for k=1 to n-1{

for all vertices u in V{

for all vertices u in V{

dist(u,v,k) = infinity;

for all vertices x in V{

if (dist(u,v,k)>dist(u,x,k-1)+w(x,v))

dist(u,v,k) = dist(u,x,k-1)+w(x,v);

}}}}}

14



The Problem

• This algorithm still takes O(n4) which is no better than the

ObviousAPSP algorithm

• If we use a certain divide and conquer technique, there is a

way to get this down to O(n3 logn) (think about how you

might do this)

• However, to get down to O(n3) run time, we need to use a

different third parameter in the recurrence

15



Floyd-Warshall

• Number the vertices arbitrarily from 1 to n

• Define dist(u, v, r) to be the shortest path from u to v where

all intermediate vertices (if any) are numbered r or less

• If r = 0, we can’t use any intermediate vertices so shortest

path from u to v is just the weight of the edge (if any)

between u and v

• If r > 0, then either the shortest legal path from u to v goes

through vertex r or it doesn’t

• We need to compute the shortest path distance from u to v

with no restrictions, which is just dist(u, v, n)

16



The recurrence

We get the following recurrence:

dist(u, v, r) =






w(u → v) if r = 0

min{dist(u, v, r − 1),

dist(u, r, r − 1) + dist(r, v, r − 1)} otherwise

17



The Algorithm

FloydWarshall(V,E,w){

for u=1 to n{

for v=1 to n{

dist(u,v,0) = w(u,v);

}}

for r=1 to n{

for u=1 to n{

for v=1 to n{

if (dist(u,v,r-1) < dist(u,r,r-1) + dist(r,v,r-1))

dist(u,v,r) = dist(u,v,r-1);

else

dist(u,v,r) = dist(u,r,r-1) + dist(r,v,r-1);

}}}}

18



Analysis

• There are three variables here, each of which takes on n

possible values

• Thus the run time is Θ(n3)

• Space required is also Θ(n3)

19



Take Away

• Floyd-Warshall solves the APSP problem in Θ(n3) time even

with negative edge weights

• Floyd-Warshall uses dynamic programming to compute APSP

• We’ve seen that sometimes for a dynamic program, we need

to introduce an extra variable to break dependencies in the

recurrence.

• We’ve also seen that the choice of this extra variable can

have a big impact on the run time of the dynamic program

20


