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The Problem

Given:

• Convex space K
• Convex function f

Goal: Find x ∈ K that minimizes f(x)
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Convexity

1. A convex set contains every point on every line segment

drawn between any two points in the set.

2. A convex function is one where any secant line segment is

always above the function. A secant (Latin: cut) line is a line

segment that intersects the function at exactly two points.

• Equivalently, a function is convex if the epigraph is a con-

vex set. An epigraph (“epi” (Latin): on top of) is the set

of points above the function.

• If the function is twice differentiable, then it is convex iff

its second derivative is always non-negative.

3. A function f is concave iff −f is convex.
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What is a gradient?

• The gradient of a function f (∇f) is just the derivatives of

f written as a vector.

• Ex: The gradient of f(x, y) = 2x+3y is the vector (2,3)

• Ex: The gradient of f(x, y) = x2+y2 at the point x = 2, y = 3

is (4,6)

• Ex: The gradient of f(x, y) = xy at the point x = 2, y = 3 is

(3,2)
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Gradient Descent Variables

• D = maxx,y∈K |x− y|
• G is an upperbound on |∇f(x)| for any x ∈ K

Note: all norms are 2-norms. D is known as the diameter of K
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Gradient Descent Algorithm

η ← D
G
√
T

Repeat for i = 0 to T :

1. yi+1 ← xi − η∇f(xi)

2. xi+1 ← Projection of yi+1 onto K

Output z = 1
T

T
i=1 xi

5



Example Run
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Theorem 1

Theorem 1 Let x∗ ∈ K be the value that minimizes f . Then,

for any  > 0, if we set T = D2G2

2
, then:

f(z) ≤ f(x∗) + 
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Fact 1: f(x)− f(y) ≤ ∇f(x) · (x− y)

A convex function that is differentiable satisfies the following

(basically, this says that the function is above the tangent plane

at any point).

f(x+ z) ≥ f(x) +∇f(x) · z, for all x, z

Seting z = y − x, we get:

f(x)− f(y) ≤ ∇f(x) · (x− y) for all x, y
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Fact 1: Picture
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Proof of Theorem 1 (I)

|xi+1 − x∗|2 ≤ |yi+1 − x∗|2

= |xi − x∗ − η∇f(xi)|2

= |xi − x∗|2 + η2|∇f(xi)|2 − 2η∇f(xi) · (xi − x∗)

First step holds since xi+1 projects yi+1 onto a space that con-

tains x∗. Second step holds by definition of yi+1. Last step holds

since |v|2 = v · v.
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Proof of Theorem 1 (II)

From last slide:

|xi+1 − x∗|2 ≤ |xi − x∗|2 + η2|∇f(xi)|2 − 2η∇f(xi) · (xi − x∗)

Reorganizing, and using definition of G:

∇f(xi) · (xi − x∗) ≤
1

2η


|xi − x∗|2 − |xi+1 − x∗|2


+

η

2
G2

Using Fact 1:

f(xi)− f(x∗) ≤
1

2η


|xi − x∗|2 − |xi+1 − x∗|2


+

η

2
G2 (1)
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Proof of Theorem 1 (III)

Sum last inequality for i = 1 to T . After cancellations:

T

i=1


f(xi)− f(x∗)


≤

1

2η


|x1 − x∗|2 − |xT+1 − x∗|2


+

Tη

2
G2

Divide the above by T. By convexity, f

1
T (


i xi)


≤ 1

T


i f(xi).

Since z = 1
T


i xi, we get

f(z)− f(x∗) ≤
D2

2ηT
+

η

2
G2.

Since η = D
G
√
T
, the right hand side is at most DG√

T
. Since T =

D2G2

2
, we have f(z) ≤ f(x∗) + 
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Online Gradient Descent

• Surprisingly, the gradient descent algorithm can work even

when the function to minimize changes in every round!

• Even if these functions are chosen by an adversary! - So long

as they are always convex.

• We just need to make a slight tweak in the algorithm (next

slide - can you spot the differences?)
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Online GD Algorithm

η ← D
G
√
T

Repeat for i = 0 to T :

1. yi+1 ← xi − η∇fi(xi)

2. xi+1 ← Projection of yi+1 onto K
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Online Gradient Theorem

Theorem 2 (Zinkevich’s Theorem) Let x∗ ∈ K be the value

that minimizes
T

i=1 fi(x
∗). Then, for all T > 0,

1

T

T

i=1


fi(xi)− fi(x

∗)

≤

DG√
T
.

Left hand side of this inequality is called the regret per step.
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Proof

• Equation 1 from Slide 9 bounds the regret for step i

• Sum regrets over all i and divide by T to get the theorem!
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Applctn: Portfolio Management

• From Section 16.6 in Arora notes
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Portfolio Management

• Imagine you are investing in n stocks

• For i, 1 ≤ i ≤ n, and t > 1, define

rt[i] =
Price of stock i on day t

Price of stock i on day t− 1

• Let x∗ be an optimal allocation of your money among the n

stocks in hindsight.

• Q: Can we design an algorithm that is competitive with x∗?
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Portfolio Management

• Our goal: Choose an allocation, xt for each day t, that max-

imizes


t

rt · xt

• Taking logs, we get that we want to maximize:


t

log(rt · xt)

• Same as minimizing

−


t

log(rt · xt)

• This last function is convex and so by Zinkevich’s theorem,

online gradient descent tracks

−


t

log(rt · x∗)
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Stochastic Gradient Descent

The final major trick of GD enables significant speed up. Assume

we want to minimize over just one function, f , again.

• In each step, i, we estimate the gradient of f at xi based on

one random data item

• Call this random gradient gi, where E(gi) = ∇f(xi)

• Then, using the gi’s we get essentially same results as if we

had the true gradient
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Stochastic GD Algorithm

η ← D
G
√
T

Repeat for i = 0 to T :

1. gi ← a random vector, such that E(gi) = ∇f(xi)

2. yi+1 ← xi − ηgi
3. xi+1 ← Projection of yi+1 onto K

Output z = 1
T

T
i=1 xi
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Stochastic GD Theorem

Theorem 3 E(f(z)) ≤ f(x∗) + DG√
T
.
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Proof (1/2)

E(f(z)) = E



f



1

T

T

i=1

xi









≤ E



1

T

T

i=1

f(xi)



 By convexity of f

≤
1

T
E




T

i=1

f(xi)



 Since E(cX) = cE(X) for constant c
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Proof (2/2)

E(f(z)− f(x∗)) ≤
1

T
E(

T

i=1

(f(xi)− f(x∗))) By previous slide

≤
1

T



i

E(∇f(xi) · (xi − x∗)) Using Fact 1

=
1

T



i

E(gi · (xi − x∗)) Cuz E(gi · x) = ∇f(xi) · x

=
1

T



i

E(fi(xi)− fi(x
∗)) Letting fi(x) = gi · x

= E



1

T

T

i=1


fi(xi)− fi(x

∗)



 Linearity of Exp.

≤
DG√
T

Regret bound using Zinkevich’s Thm
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Two Notes on Proof

• Requirement in Step 3: E(gi · x) = ∇f(xi) · x, for all x

• Holds since dot product is linear, and E(gi) = ∇f(xi)

• Requirement in Last Step: fi(x) is convex. Needed to use

Zinkevich

• Holds since fi(x) = gi · x is linear
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Take Away

Gradient Descent comes in 3 flavors:

• Standard Gradient Descent

• Online Gradient Descent

Works even when function is changing

• Stochastic Gradient Descent

Just need the correct gradient in expectation
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